1,016 research outputs found
Using aerobic exercise to evaluate sub-lethal tolerance of acute warming in fishes
We investigated whether fatigue from sustained aerobic swimming provides a sub-lethal endpoint to define tolerance of acute warming in fishes, as an alternative to loss of equilibrium (LOE) during a critical thermal maximum (CTmax) protocol. Two species were studied, Nile tilapia (Oreochromis niloticus) and pacu (Piaractus mesopotamicus). Each fish underwent an incremental swim test to determine gait transition speed (UGT), where it first engaged the unsteady anaerobic swimming mode that preceded fatigue. After suitable recovery, each fish was exercised at 85% of their own UGT and warmed 1°C every 30 min, to identify the temperature at which they fatigued, denoted as CTswim. Fish were also submitted to a standard CTmax, warming at the same rate as CTswim, under static conditions until LOE. All individuals fatigued in CTswim, at a mean temperature approximately 2°C lower than their CTmax. Therefore, if exposed to acute warming in the wild, the ability to perform aerobic metabolic work would be constrained at temperatures significantly below those that directly threatened survival. The collapse in performance at CTswim was preceded by a gait transition qualitatively indistinguishable from that during the incremental swim test. This suggests that fatigue in CTswim was linked to an inability to meet the tissue oxygen demands of exercise plus warming. This is consistent with the oxygen and capacity limited thermal tolerance (OCLTT) hypothesis, regarding the mechanism underlying tolerance of warming in fishes. Overall, fatigue at CTswim provides an ecologically relevant sub-lethal threshold that is more sensitive to extreme events than LOE at CTmax
One-Loop QCD Corrections to the Thermal Wilson Line Model
We calculate the time independent four-point function in high temperature (T)
QCD and obtain the leading momentum dependent terms. Furthermore, we relate
these derivative interactions to derivative terms in a recently proposed finite
T effective action based on the SU(3) Wilson Line and its trace, the Polyakov
Loop. By this procedure we thus obtain a perturbative matching at finite T
between QCD and the effective model. In particular, we calculate the leading
perturbative QCD-correction to the kinetic term for the Polyakov Loop.Comment: Minor changes, one reference adde
Annotation of the modular polyketide synthase and nonribosomal peptide synthetase gene clusters in the genome of Streptomyces tsukubaensis NRRL18488
et al.The high G+C content and large genome size make the sequencing and assembly of Streptomyces genomes more difficult than for other bacteria. Many pharmaceutically important natural products are synthesized by modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). The analysis of such gene clusters is difficult if the genome sequence is not of the highest quality, because clusters can be distributed over several contigs, and sequencing errors can introduce apparent frameshifts into the large PKS and NRPS proteins. An additional problem is that the modular nature of the clusters results in the presence of imperfect repeats, which may cause assembly errors. The genome sequence of Streptomyces tsukubaensis NRRL18488 was scanned for potential PKS and NRPS modular clusters. A phylogenetic approach was used to identify multiple contigs belonging to the same cluster. Four PKS clusters and six NRPS clusters were identified. Contigs containing cluster sequences were analyzed in detail by using the ClustScan program, which suggested the order and orientation of the contigs. The sequencing of the appropriate PCR products confirmed the ordering and allowed the correction of apparent frameshifts resulting from sequencing errors. The product chemistry of such correctly assembled clusters could also be predicted. The analysis of one PKS cluster showed that it should produce a bafilomycin-like compound, and reverse transcription (RT)-PCR was used to show that the cluster was transcribed. © 2012, American Society for Microbiology.We thank the Government of Slovenia, Ministry of Higher Education, Science and Technology (Slovenian Research Agency [ARRS]), for the award of grant no. J4-9331 and L4-2188 to H.P. We also thank the Ministry of the Economy, the JAPTI Agency, and the European Social Fund (contract no. 102/2008) for the funds awarded for the employment of G.K. This work was also funded by a cooperation grant of the German Academic Exchange Service (DAAD) and the Ministry of Science, Education, and Sports, Republic of Croatia (to J.C. and D.H.), and by grant 09/5 (to D.H.) from the Croatian Science Foundation.Peer Reviewe
General structure of the photon self-energy in non-commutative QED
We study the behavior of the photon two point function, in non-commutative
QED, in a general covariant gauge and in arbitrary space-time dimensions. We
show, to all orders, that the photon self-energy is transverse. Using an
appropriate extension of the dimensional regularization method, we evaluate the
one-loop corrections, which show that the theory is renormalizable. We also
prove, to all orders, that the poles of the photon propagator are gauge
independent and briefly discuss some other related aspects.Comment: 16 pages, revtex4. This is the final version to be published in Phys.
Rev.
Large-scale pharmacogenomic study of sulfonylureas and the QT, JT and QRS intervals: CHARGE Pharmacogenomics Working Group
Sulfonylureas, a commonly used class of medication used to treat type 2 diabetes, have been associated with an increased risk of cardiovascular disease. Their effects on QT interval duration and related electrocardiographic phenotypes are potential mechanisms for this adverse effect. In 11 ethnically diverse cohorts that included 71 857 European, African-American and Hispanic/Latino ancestry individuals with repeated measures of medication use and electrocardiogram (ECG) measurements, we conducted a pharmacogenomic genome-wide association study of sulfonylurea use and three ECG phenotypes: QT, JT and QRS intervals. In ancestry-specific meta-analyses, eight novel pharmacogenomic loci met the threshold for genome-wide significance (P<5 × 10−8), and a pharmacokinetic variant in CYP2C9 (rs1057910) that has been associated with sulfonylurea-related treatment effects and other adverse drug reactions in previous studies was replicated. Additional research is needed to replicate the novel findings and to understand their biological basis
Uniqueness of (dilatonic) charged black holes and black p-branes in higher dimensions
We prove the uniqueness of higher dimensional (dilatonic) charged black holes
in static and asymptotically flat spacetimes for arbitrary vector-dilaton
coupling constant. An application to the uniqueness of a wide class of black
p-branes is also given.Comment: 6 page
‘Cytology-on-a-chip’ based sensors for monitoring of potentially malignant oral lesions
Despite significant advances in surgical procedures and treatment, long-term prognosis for patients with oral cancer remains poor, with survival rates among the lowest of major cancers. Better methods are desperately needed to identify potential malignancies early when treatments are more effective. Objective To develop robust classification models from cytology-on-a-chip measurements that mirror diagnostic performance of gold standard approach involving tissue biopsy. Materials and methods Measurements were recorded from 714 prospectively recruited patients with suspicious lesions across 6 diagnostic categories (each confirmed by tissue biopsy -histopathology) using a powerful new ‘cytology-on-a-chip’ approach capable of executing high content analysis at a single cell level. Over 200 cellular features related to biomarker expression, nuclear parameters and cellular morphology were recorded per cell. By cataloging an average of 2000 cells per patient, these efforts resulted in nearly 13 million indexed objects. Results Binary “low-risk”/“high-risk” models yielded AUC values of 0.88 and 0.84 for training and validation models, respectively, with an accompanying difference in sensitivity + specificity of 6.2%. In terms of accuracy, this model accurately predicted the correct diagnosis approximately 70% of the time, compared to the 69% initial agreement rate of the pool of expert pathologists. Key parameters identified in these models included cell circularity, Ki67 and EGFR expression, nuclear-cytoplasmic ratio, nuclear area, and cell area. Conclusions This chip-based approach yields objective data that can be leveraged for diagnosis and management of patients with PMOL as well as uncovering new molecular-level insights behind cytological differences across the OED spectrum
A measurement of the tau mass and the first CPT test with tau leptons
We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV
using tau pairs from Z0 decays. To test CPT invariance we compare the masses of
the positively and negatively charged tau leptons. The relative mass difference
is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.
Six Years of Chandra Observations of Supernova Remnants
We present a review of the first six years of Chandra X-ray Observatory
observations of supernova remnants. From the official "first-light" observation
of Cassiopeia A that revealed for the first time the compact remnant of the
explosion, to the recent million-second spectrally-resolved observation that
revealed new details of the stellar composition and dynamics of the original
explosion, Chandra observations have provided new insights into the supernova
phenomenon. We present an admittedly biased overview of six years of these
observations, highlighting new discoveries made possible by Chandra's unique
capabilities.Comment: 82 pages, 28 figures, for the book Astrophysics Update
- …