284 research outputs found
Lattice Calculation of Heavy-Light Decay Constants with Two Flavors of Dynamical Quarks
We present results for , , , and their ratios in
the presence of two flavors of light sea quarks (). We use Wilson light
valence quarks and Wilson and static heavy valence quarks; the sea quarks are
simulated with staggered fermions. Additional quenched simulations with
nonperturbatively improved clover fermions allow us to improve our control of
the continuum extrapolation. For our central values the masses of the sea
quarks are not extrapolated to the physical , masses; that is, the
central values are "partially quenched." A calculation using "fat-link clover"
valence fermions is also discussed but is not included in our final results. We
find, for example,
MeV, , MeV, and , where in each case the first error is
statistical and the remaining three are systematic: the error within the
partially quenched approximation, the error due to the missing strange
sea quark and to partial quenching, and an estimate of the effects of chiral
logarithms at small quark mass. The last error, though quite significant in
decay constant ratios, appears to be smaller than has been recently suggested
by Kronfeld and Ryan, and Yamada. We emphasize, however, that as in other
lattice computations to date, the lattice quark masses are not very light
and chiral log effects may not be fully under control.Comment: Revised version includes an attempt to estimate the effects of chiral
logarithms at small quark mass; central values are unchanged but one more
systematic error has been added. Sections III E and V D are completely new;
some changes for clarity have also been made elsewhere. 82 pages; 32 figure
Matrix elements relevant for Delta I=1/2 rule and epsilon-prime from Lattice QCD with staggered fermions
We perform a study of matrix elements relevant for the Delta I=1/2 rule and
the direct CP-violation parameter epsilon-prime from first principles by
computer simulation in Lattice QCD. We use staggered (Kogut-Susskind) fermions,
and employ the chiral perturbation theory method for studying K to 2 Pi decays.
Having obtained a reasonable statistical accuracy, we observe an enhancement of
the Delta I=1/2 amplitude, consistent with experiment within our large
systematic errors. Finite volume and quenching effects have been studied and
were found small compared to noise. The estimates of epsilon-prime are hindered
by large uncertainties associated with operator matching. In this paper we
explain the simulation method, present the results and address the systematic
uncertainties.Comment: 40 pages, 17 figures, LATEX with epsf, to be submitted to Phys. Rev.
D. Minor errors are corrected, some wording and notation change
Influence of the U(1)_A Anomaly on the QCD Phase Transition
The SU(3)_{r} \times SU(3)_{\ell} linear sigma model is used to study the
chiral symmetry restoring phase transition of QCD at nonzero temperature. The
line of second order phase transitions separating the first order and smooth
crossover regions is located in the plane of the strange and nonstrange quark
masses. It is found that if the U(1)_{A} symmetry is explicitly broken by the
U(1)_{A} anomaly then there is a smooth crossover to the chirally symmetric
phase for physical values of the quark masses. If the U(1)_{A} anomaly is
absent, then there is a phase transition provided that the \sigma meson mass is
at least 600 MeV. In both cases, the region of first order phase transitions in
the quark mass plane is enlarged as the mass of the \sigma meson is increased.Comment: 5 pages, 3 figures, Revtex, discussion extended and references added.
To appear in PR
Quenched Lattice QCD with Domain Wall Fermions and the Chiral Limit
Quenched QCD simulations on three volumes, , and
and three couplings, , 5.85 and 6.0 using domain
wall fermions provide a consistent picture of quenched QCD. We demonstrate that
the small induced effects of chiral symmetry breaking inherent in this
formulation can be described by a residual mass (\mres) whose size decreases
as the separation between the domain walls () is increased. However, at
stronger couplings much larger values of are required to achieve a given
physical value of \mres. For and , we find
\mres/m_s=0.033(3), while for , and ,
\mres/m_s=0.074(5), where is the strange quark mass. These values are
significantly smaller than those obtained from a more naive determination in
our earlier studies. Important effects of topological near zero modes which
should afflict an accurate quenched calculation are easily visible in both the
chiral condensate and the pion propagator. These effects can be controlled by
working at an appropriately large volume. A non-linear behavior of in
the limit of small quark mass suggests the presence of additional infrared
subtlety in the quenched approximation. Good scaling is seen both in masses and
in over our entire range, with inverse lattice spacing varying between
1 and 2 GeV.Comment: 91 pages, 34 figure
Topological Susceptibility on Dynamical Staggered Fermion Configurations
The topological susceptibility is one of the few physical quantities that
directly measure the properties of the QCD vacuum. Chiral perturbation theory
predicts that in the small quark mass limit the topological susceptibility
depends quadratically on the pion mass, approaching zero in the chiral limit.
Lattice calculations have difficulty reproducing this behavior. In this paper
we study the topological susceptibility on dynamical staggered fermion
configurations. Our results indicate that the lattice spacing has to be small,
around a~0.1fm for thin link staggered fermion actions to show the expected
chiral behavior. Our preliminary result indicates that fat link fermions, on
the other hand, reproduce the theoretical expectations even on lattices with
a~0.17fm. We argue that this is due to the improved flavor symmetry of fat link
fermionic actions.Comment: 16 pages, 4 figure
On the nature of the finite-temperature transition in QCD
We discuss the nature of the finite-temperature transition in QCD with N_f
massless flavors. Universality arguments show that a continuous (second-order)
transition must be related to a 3-D universality class characterized by a
complex N_f X N_f matrix order parameter and by the symmetry-breaking pattern
[SU(N_f)_L X SU(N_f)_R]/Z(N_f)_V -> SU(N_f)_V/Z(N_f)_V, or [U(N_f)_L X
U(N_f)_R]/U(1)_V -> U(N_f)_V/U(1)_V if the U(1)_A symmetry is effectively
restored at T_c. The existence of any of these universality classes requires
the presence of a stable fixed point in the corresponding 3-D Phi^4 theory with
the expected symmetry-breaking pattern. Otherwise, the transition is of first
order. In order to search for stable fixed points in these Phi^4 theories, we
exploit a 3-D perturbative approach in which physical quantities are expanded
in powers of appropriate renormalized quartic couplings. We compute the
corresponding Callan-Symanzik beta-functions to six loops. We also determine
the large-order behavior to further constrain the analysis. No stable fixed
point is found, except for N_f=2, corresponding to the symmetry-breaking
pattern [SU(2)_L X SU(2)_R]/Z(2)_V -> SU(2)_V/Z(2)_V equivalent to O(4) ->
O(3). Our results confirm and put on a firmer ground earlier analyses performed
close to four dimensions, based on first-order calculations in the framework of
the epsilon=4-d expansion. These results indicate that the finite-temperature
phase transition in QCD is of first order for N_f>2. A continuous transition is
allowed only for N_f=2. But, since the theory with symmetry-breaking pattern
[U(2)_L X U(2)_R]/U(1)_V -> U(2)_V/U(1)_V does not have stable fixed points,
the transition can be continuous only if the effective breaking of the U(1)_A
symmetry is sufficiently large.Comment: 30 pages, 3 figs, minor correction
Planck intermediate results. VIII. Filaments between interacting clusters
About half of the baryons of the Universe are expected to be in the form of
filaments of hot and low density intergalactic medium. Most of these baryons
remain undetected even by the most advanced X-ray observatories which are
limited in sensitivity to the diffuse low density medium. The Planck satellite
has provided hundreds of detections of the hot gas in clusters of galaxies via
the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for
studying extended low density media through the tSZ effect. In this paper we
use the Planck data to search for signatures of a fraction of these missing
baryons between pairs of galaxy clusters. Cluster pairs are good candidates for
searching for the hotter and denser phase of the intergalactic medium (which is
more easily observed through the SZ effect). Using an X-ray catalogue of
clusters and the Planck data, we select physical pairs of clusters as
candidates. Using the Planck data we construct a local map of the tSZ effect
centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray
maps of these pairs. After having modelled and subtracted the tSZ effect and
X-ray emission for each cluster in the pair we study the residuals on both the
SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a
significant tSZ effect signal in the intercluster region beyond the virial
radii of the clusters. A joint X-ray SZ analysis allows us to constrain the
temperature and density of this intercluster medium. We obtain a temperature of
kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density
of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the
first SZ detection of the hot and diffuse intercluster gas.Comment: Accepted by A&
Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources
We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples
- …