119 research outputs found

    First principle integrated modeling of multi-channel transport including Tungsten in JET

    Get PDF
    For the first time, over five confinement times, the self-consistent flux driven time evolution of heat, momentum transport and particle fluxes of electrons and multiple ions including Tungsten (W) is modeled within the integrated modeling platform JETTO (Romanelli et al 2014 Plasma Fusion Res. 9 1–4), using first principle-based codes: namely, QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036) for turbulent transport and NEO (Belli and Candy 2008 Plasma Phys. Control. Fusion 50 95010) for neoclassical transport. For a JET-ILW pulse, the evolution of measured temperatures, rotation and density profiles are successfully predicted and the observed W central core accumulation is obtained. The poloidal asymmetries of the W density modifying its neoclassical and turbulent transport are accounted for. Actuators of the W core accumulation are studied: removing the central particle source annihilates the central W accumulation whereas the suppression of the torque reduces significantly the W central accumulation. Finally, the presence of W slightly reduces main ion heat turbulent transport through complex nonlinear interplays involving radiation, effective charge impact on ITG and collisionality.EURATOM 63305

    Angular momentum transport modeling: achievements of a gyrokinetic quasi-linear approach

    Get PDF
    International audienceQuaLiKiz, a model based on a local gyrokinetic eigenvalue solver is expanded to include momentum flux modeling in addition to heat and particle fluxes. Essential for accurate momentum flux predictions, the parallel asymmetrization of the eigenfunctions is successfully recovered by an analytical fluid model. This is tested against self-consistent gyrokinetic calculations and allows for a correct prediction of the E×B shear impact on the saturated potential amplitude by means of a mixing length rule. Hence, the effect of the E×B shear is recovered on all the transport channels including the induced residual stress. Including these additions, QuaLiKiz remains ∼10 000 faster than non-linear gyrokinetic codes allowing for comparisons with experiments without resorting to high performance computing. The example is given of momentum pinch calculations in NBI modulation experiments

    Neural network surrogate of QuaLiKiz using JET experimental data to populate training space

    Get PDF
    Within integrated tokamak plasma modeling, turbulent transport codes are typically the computational bottleneck limiting their routine use outside of post-discharge analysis. Neural network (NN) surrogates have been used to accelerate these calculations while retaining the desired accuracy of the physics-based models. This paper extends a previous NN model, known as QLKNN-hyper-10D, by incorporating the impact of impurities, plasma rotation, and magnetic equilibrium effects. This is achieved by adding a light impurity fractional density (n imp,light/n e) and its normalized gradient, the normalized pressure gradient (α), the toroidal Mach number (M tor), and the normalized toroidal flow velocity gradient. The input space was sampled based on experimental data from the JET tokamak to avoid the curse of dimensionality. The resulting networks, named QLKNN-jetexp-15D, show good agreement with the original QuaLiKiz model, both by comparing individual transport quantity predictions and by comparing its impact within the integrated model, JINTRAC. The profile-averaged RMS of the integrated modeling simulations is &lt;10% for each of the five scenarios tested. This is non-trivial given the potential numerical instabilities present within the highly nonlinear system of equations governing plasma transport, especially considering the novel addition of momentum flux predictions to the model proposed here. An evaluation of all 25 NN output quantities at one radial location takes ∼0.1 ms, 104 times faster than the original QuaLiKiz model. Within the JINTRAC integrated modeling tests performed in this study, using QLKNN-jetexp-15D resulted in a speed increase of only 60–100 as other physics modules outside of turbulent transport become the bottleneck.</p

    Isotope identity experiments in JET-ILW with H and D L-mode plasmas

    Get PDF
    NBI-heated L-mode plasmas have been obtained in JET with the Be/W ITER-like wall (JETILW) in H and D, with matched profiles of the dimensionless plasma parameters, ρ* , ν* , β and q in the plasma core confinement region and same Ti/Te and Zeff. The achieved isotope identity indicates that the confinement scale invariance principle is satisfied in the core confinement region of these plasmas, where the dominant instabilities are Ion Temperature Gradient (ITG) modes. The dimensionless thermal energy confinement time, Ωi τE,th, and the scaled core plasma heat diffusivity, A χeff/BT, are identical in H and D within error bars, indicating lack of isotope mass dependence of the dimensionless L-mode thermal energy confinement time in JET-ILW. Predictive flux driven simulations with JETTO-TGLF of the H and D identity pair is in very good agreement with experiment for both isotopes: the stiff core heat transport, typical of JET-ILW NBI heated L-modes, overcomes the local gyro-Bohm scaling of gradient-driven TGLF, explaining the lack of isotope mass dependence in the confinement region of these plasmas. The effect of E × B shearing on the predicted heat and particle transport channels is found to be negligible for these low beta and low momentum input plasmas.EURATOM 633053RCUK Energy Programme EP/P012450/

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Overview of the JET results in support to ITER

    Get PDF

    Integrated modelling of improved core plasma performance in X-Point Radiator regime on WEST

    No full text
    International audience1.Experimental observation & interpretative modeling2.Predictive modeling3.Conclusions and discussion
    corecore