5,852 research outputs found
State-space based mass event-history model I: many decision-making agents with one target
A dynamic decision-making system that includes a mass of indistinguishable
agents could manifest impressive heterogeneity. This kind of nonhomogeneity is
postulated to result from macroscopic behavioral tactics employed by almost all
involved agents. A State-Space Based (SSB) mass event-history model is
developed here to explore the potential existence of such macroscopic
behaviors. By imposing an unobserved internal state-space variable into the
system, each individual's event-history is made into a composition of a common
state duration and an individual specific time to action. With the common state
modeling of the macroscopic behavior, parametric statistical inferences are
derived under the current-status data structure and conditional independence
assumptions. Identifiability and computation related problems are also
addressed. From the dynamic perspectives of system-wise heterogeneity, this SSB
mass event-history model is shown to be very distinct from a random effect
model via the Principle Component Analysis (PCA) in a numerical experiment.
Real data showing the mass invasion by two species of parasitic nematode into
two species of host larvae are also analyzed. The analysis results not only are
found coherent in the context of the biology of the nematode as a parasite, but
also include new quantitative interpretations.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS189 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
A topological insulator surface under strong Coulomb, magnetic and disorder perturbations
Three dimensional topological insulators embody a newly discovered state of
matter characterized by conducting spin-momentum locked surface states that
span the bulk band gap as demonstrated via spin-resolved ARPES measurements .
This highly unusual surface environment provides a rich ground for the
discovery of novel physical phenomena. Here we present the first controlled
study of the topological insulator surfaces under strong Coulomb, magnetic and
disorder perturbations. We have used interaction of iron, with a large Coulomb
state and significant magnetic moment as a probe to \textit{systematically test
the robustness} of the topological surface states of the model topological
insulator BiSe. We observe that strong perturbation leads to the
creation of odd multiples of Dirac fermions and that magnetic interactions
break time reversal symmetry in the presence of band hybridization. We also
present a theoretical model to account for the altered surface of BiSe.
Taken collectively, these results are a critical guide in manipulating
topological surfaces for probing fundamental physics or developing device
applications.Comment: 14 pages, 4 Figures. arXiv admin note: substantial text overlap with
arXiv:1009.621
Generalization of the Scheme and the Structure of the Valence Space
The scheme, which has been extensively applied to even-even nuclei,
is found to be a very good benchmark for odd-even, even-odd, and doubly-odd
nuclei as well. There are no apparent shifts in the correlations for these four
classes of nuclei. The compact correlations highlight the deviant behavior of
the Z=78 nuclei, are used to deduce effective valence proton numbers near Z=64,
and to study the evolution of the Z=64 subshell gap.Comment: 10 pages, 4 figure
A statistical network analysis of the HIV/AIDS epidemics in Cuba
The Cuban contact-tracing detection system set up in 1986 allowed the
reconstruction and analysis of the sexual network underlying the epidemic
(5,389 vertices and 4,073 edges, giant component of 2,386 nodes and 3,168
edges), shedding light onto the spread of HIV and the role of contact-tracing.
Clustering based on modularity optimization provides a better visualization and
understanding of the network, in combination with the study of covariates. The
graph has a globally low but heterogeneous density, with clusters of high
intraconnectivity but low interconnectivity. Though descriptive, our results
pave the way for incorporating structure when studying stochastic SIR epidemics
spreading on social networks
The <i>Castalia</i> mission to Main Belt Comet 133P/Elst-Pizarro
We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC’s activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA’s highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these
A sulfated carbohydrate epitope inhibits axon regeneration after injury
Chondroitin sulfate proteoglycans (CSPGs) represent a major barrier to regenerating axons in the central nervous system (CNS), but the structural diversity of their polysaccharides has hampered efforts to dissect the structure-activity relationships underlying their physiological activity. By taking advantage of our ability to chemically synthesize specific oligosaccharides, we demonstrate that a sugar epitope on CSPGs, chondroitin sulfate-E (CS-E), potently inhibits axon growth. Removal of the CS-E motif significantly attenuates the inhibitory activity of CSPGs on axon growth. Furthermore, CS-E functions as a protein recognition element to engage receptors including the transmembrane protein tyrosine phosphatase PTPσ, thereby triggering downstream pathways that inhibit axon growth. Finally, masking the CS-E motif using a CS-E-specific antibody reversed the inhibitory activity of CSPGs and stimulated axon regeneration in vivo. These results demonstrate that a specific sugar epitope within chondroitin sulfate polysaccharides can direct important physiological processes and provide new therapeutic strategies to regenerate axons after CNS injury
Two-loop RGEs with Dirac gaugino masses
The set of renormalisation group equations to two loop order for general
supersymmetric theories broken by soft and supersoft operators is completed. As
an example, the explicit expressions for the RGEs in a Dirac gaugino extension
of the (N)MSSM are presented.Comment: 10 pages + 24 pages of RGEs in appendix; no figure
Surface states and their possible role in the superconductivity of MgB2
We report layer-Korringa-Kohn-Rostocker calculations for bulk and surface
states as well as the corresponding angle resolved photoemission (ARPES)
intensities of MgB2. Our theoretical results reproduce very well the recent
ARPES data by Uchiyama et al., cond-mat/0111152. At least two surface states
are assigned. Consequences of SFS on the anisotropy of the upper critical
fields and other properties in the superconducting state of small grains in
micropowder samples are briefly discussed.Comment: 4pages, 6figures, corrected typos, references adde
The Main Belt Comets and ice in the Solar System
We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies
- …