100 research outputs found

    Synthesis, characterization, and bioactivity of carboxylic acid-functionalized titanium dioxide nanobelts

    Get PDF
    Background Surface modification strategies to reduce engineered nanomaterial (ENM) bioactivity have been used successfully in carbon nanotubes. This study examined the toxicity and inflammatory potential for two surface modifications (humic acid and carboxylation) on titanium nanobelts (TNB). Methods The in vitro exposure models include C57BL/6 alveolar macrophages (AM) and transformed human THP-1 cells exposed to TNB for 24 hrs in culture. Cell death and NLRP3 inflammasome activation (IL-1β release) were monitored. Short term (4 and 24 hr) in vivo studies in C57BL/6, BALB/c and IL-1R null mice evaluated inflammation and cytokine release, and cytokine release from ex vivo cultured AM. Results Both in vitro cell models suggest that the humic acid modification does not significantly affect TNB bioactivity, while carboxylation reduced both toxicity and NLRP3 inflammasome activation. In addition, short term in vivo exposures in both C57BL/6 and IL-1R null mouse strains demonstrated decreased markers of inflammation, supporting the in vitro finding that carboxylation is effective in reducing bioactivity. TNB instillations in IL-1R null mice demonstrated the critical role of IL-1β in initiation of TNB-induced lung inflammation. Neutrophils were completely absent in the lungs of IL-1R null mice instilled with TNB for 24 hrs. However, the cytokine content of the IL-1R null mice lung lavage samples indicated that other inflammatory agents, IL-6 and TNF-α were constitutively elevated indicating a potential compensatory inflammatory mechanism in the absence of IL-1 receptors. Conclusions Taken together, the data suggests that carboxylation, but not humic acid modification of TNB reduces, but does not totally eliminate bioactivity of TNB, which is consistent with previous studies of other long aspect ratio nanomaterials such as carbon nanotubes

    Synthesis, characterization, and bioactivity of carboxylic acid-functionalized titanium dioxide nanobelts

    Get PDF
    Background: Surface modification strategies to reduce engineered nanomaterial (ENM) bioactivity have been used successfully in carbon nanotubes. This study examined the toxicity and inflammatory potential for two surface modifications (humic acid and carboxylation) on titanium nanobelts (TNB). Methods: The in vitro exposure models include C57BL/6 alveolar macrophages (AM) and transformed human THP-1 cells exposed to TNB for 24 hrs in culture. Cell death and NLRP3 inflammasome activation (IL-1β release) were monitored. Short term (4 and 24 hr) in vivo studies in C57BL/6, BALB/c and IL-1R null mice evaluated inflammation and cytokine release, and cytokine release from ex vivo cultured AM. Results: Both in vitro cell models suggest that the humic acid modification does not significantly affect TNB bioactivity, while carboxylation reduced both toxicity and NLRP3 inflammasome activation. In addition, short term in vivo exposures in both C57BL/6 and IL-1R null mouse strains demonstrated decreased markers of inflammation, supporting the in vitro finding that carboxylation is effective in reducing bioactivity. TNB instillations in IL-1R null mice demonstrated the critical role of IL-1β in initiation of TNB-induced lung inflammation. Neutrophils were completely absent in the lungs of IL-1R null mice instilled with TNB for 24 hrs. However, the cytokine content of the IL-1R null mice lung lavage samples indicated that other inflammatory agents, IL-6 and TNF-α were constitutively elevated indicating a potential compensatory inflammatory mechanism in the absence of IL-1 receptors. Conclusions: Taken together, the data suggests that carboxylation, but not humic acid modification of TNB reduces, but does not totally eliminate bioactivity of TNB, which is consistent with previous studies of other long aspect ratio nanomaterials such as carbon nanotubes

    Regulierung toxigener Pflanzenpathogene - Ökologische Dienstleistungen der Bodenfauna

    Get PDF
    Bodentiere bieten eine Vielfalt an ökologischen Funktionen und Dienstleistungen. Dazu zählen beispielsweise die Stimulierung von Zersetzungsprozessen und der Abbau von Pflanzenrückständen, was eine Regulierung von Pflanzenpathogenen und eine Reduzierung von Schadstoffen zur Folge haben kann. Ungeklärt blieb bislang allerdings, inwiefern bestimmte Schlüsselorganismen (Regenwürmer: Lumbricus terrestris; Collembolen: Folsomia candida und Nematoden: Aphelenchoides saprophilus) und deren Interaktion einen signifikanten Beitrag zum Abbau von phytopathogenen und toxigenen Schadpilzen der Gattung Fusarium in Ernterückständen von Getreide leisten und somit zur Lösung agrarrelevanter Umweltprobleme beitragen könnten. Aus diesem Grund wurden 2011 und 2013 Untersuchungen im Freiland durchgeführt, anhand derer folgende Hypothesen geprüft werden sollten: (1) Die eingesetzten Bodentiere fördern den Abbau von Fusarium-Biomasse im Stroh; (2) Die Interaktion zwischen den Vertretern der Makrofauna, Mesofauna und Mikrofauna verstärkt die Reduzierung der Fusarium-Biomasse. In beiden Versuchsjahren wurde nach Versuchsende (4 und 8 Wochen) in Stroh und Boden die Fusarium-Biomasse in Form von Fusarium-Protein-Äquivalenten (FPE) mittels der ELISA (Enzyme-linked immunosorbent assay)-Methodik quantitativ bestimmt. Außerdem wurde die Biomasse der Regenwürmer sowie die Individuenzahlen von Collembolen und Nematoden erfasst. Als Parameter für die Attraktivität des Strohs wurde das Verhältnis zwischen den Anteilen des verbliebenen Strohs auf der Bodenoberfläche und des von den Regenwürmern in den Boden eingearbeiteten Strohs bestimmt. Die eingesetzten Bodentiere förderten den Abbau von Fusarium-Biomasse in Weizenstroh, wobei L. terrestris in seiner Funktion als Primärzersetzer den wesentlichen Beitrag leistete. Der Einfluss von Collembolen und Nematoden stellte sich in Anwesenheit von L. terrestris als vernachlässigbar heraus, da die Interaktion nicht zu einem verstärkten Rückgang der Fusarium-Biomasse führte. Im Wirkungsgeflecht zwischen Bodentieren und pilzlichen Schaderregern tragen vor allem anektische, detritivore Regenwürmer durch aktive Regulierung von Pflanzenpathogenen maßgeblich zur Erhaltung der Bodengesundheit als ökologische Dienstleistung in Agrarökosystemen bei

    Formation of finite antiferromagnetic clusters and the effect of electronic phase separation in Pr{_0.5}Ca{_0.5}Mn{_0.975}Al{_0.025}O{_3}

    Full text link
    We report the first experimental evidence of a magnetic phase arising due to the thermal blocking of antiferromagnetic clusters in the weakened charge and orbital ordered system Pr{_0.5}Ca{_0.5}Mn{_0.975}Al{_0.025}O{_3}. The third order susceptibility (\chi_3) is used to differentiate this transition from a spin or cluster glass like freezing mechanism. These clusters are found to be mesoscopic and robust to electronic phase separation which only enriches the antiphase domain walls with holes at the cost of the bulk, without changing the size of these clusters. This implies that Al substitution provides sufficient disorder to quench the length scales of the striped phases.Comment: 4 Post Script Figure

    Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs

    Get PDF
    Association studies, comparing elite athletes with sedentary controls, have reported a number of genes that may be related to athlete status. The present study reports the first genome wide linkage scan for athlete status. Subjects were 4488 adult female twins from the TwinsUK Adult Twin Registry (793 monozygotic [MZ] and 1000 dizygotic [DZ] complete twin pairs, and single twins). Athlete status was measured by asking the twins whether they had ever competed in sports and what was the highest level obtained. Twins who had competed at the county or national level were considered elite athletes. Using structural equation modeling in Mx, the heritability of athlete status was estimated at 66%. Seven hundred DZ twin pairs that were successfully genotyped for 1946 markers (736 microsatellites and 1210 SNPs) were included in the linkage analysis. Identical-by-descent probabilities were estimated in Merlin for a 1 cM grid, taking into account the linkage disequilibrium of correlated SNPs. The linkage scan was carried out in Mx using the π-approach. Suggestive linkages were found on chromosomes 3q22-q24 and 4q31-q34. Both areas converge with findings from previous studies using exercise phenotypes. The peak on 3q22-q24 was found at the SLC9A9 gene. The region 4q31-q34 overlaps with the region for which suggestive linkages were found in two previous linkage studies for physical fitness (FABP2 gene; Bouchard et al., 2000) and physical activity (UCP1 gene; Simonen et al., 2003). Future association studies should further clarify the possible role of these genes in athlete status

    Evaluation of pulmonary and systemic toxicity following lung exposure to graphite nanoplates: a member of the graphene-based nanomaterial family

    Get PDF
    Background: Graphene, a monolayer of carbon, is an engineered nanomaterial (ENM) with physical and chemical properties that may offer application advantages over other carbonaceous ENMs, such as carbon nanotubes (CNT). The goal of this study was to comparatively assess pulmonary and systemic toxicity of graphite nanoplates, a member of the graphene-based nanomaterial family, with respect to nanoplate size. Methods: Three sizes of graphite nanoplates [20 μm lateral (Gr20), 5 μm lateral (Gr5), and \u3c2 \u3eμm lateral (Gr1)] ranging from 8–25 nm in thickness were characterized for difference in surface area, structure,, zeta potential, and agglomeration in dispersion medium, the vehicle for in vivo studies. Mice were exposed by pharyngeal aspiration to these 3 sizes of graphite nanoplates at doses of 4 or 40 μg/mouse, or to carbon black (CB) as a carbonaceous control material. At 4 h, 1 day, 7 days, 1 month, and 2 months post-exposure, bronchoalveolar lavage was performed to collect fluid and cells for analysis of lung injury and inflammation. Particle clearance, histopathology and gene expression in lung tissue were evaluated. In addition, protein levels and gene expression were measured in blood, heart, aorta and liver to assess systemic responses. Results: All Gr samples were found to be similarly composed of two graphite structures and agglomerated to varying degrees in DM in proportion to the lateral dimension. Surface area for Gr1 was approximately 7-fold greater than Gr5 and Gr20, but was less reactive reactive per m2 . At the low dose, none of the Gr materials induced toxicity. At the high dose, Gr20 and Gr5 exposure increased indices of lung inflammation and injury in lavage fluid and tissue gene expression to a greater degree and duration than Gr1 and CB. Gr5 and Gr20 showed no or minimal lung epithelial hypertrophy and hyperplasia, and no development of fibrosis by 2 months post-exposure. In addition, the aorta and liver inflammatory and acute phase genes were transiently elevated in Gr5 and Gr20, relative to Gr1. Conclusions: Pulmonary and systemic toxicity of graphite nanoplates may be dependent on lateral size and/or surface reactivity, with the graphite nanoplates \u3e 5 μm laterally inducing greater toxicity which peaked at the early time points post-exposure relative to the 1–2 μm graphite nanoplate

    Collateral Health Issues Derived from the Covid-19 Pandemic.

    Get PDF
    At the end of 2019, a new coronavirus (Covid-19) outbreak occurred in Wuhan, China, and spread throughout the world despite efforts to contain the virus. At the end of January 2020, the General Director of the World Health Organization (WHO) declared a Public Health Emergency of International Concern, and by mid-May 2020, the worldwide number of known Covid-19 cases had surpassed 4.4 million including more than 300,000 deaths..

    Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Titanium dioxide (TiO<sub>2</sub>) nanomaterials have considerable beneficial uses as photocatalysts and solar cells. It has been established for many years that pigment-grade TiO<sub>2 </sub>(200 nm sphere) is relatively inert when internalized into a biological model system (in vivo or in vitro). For this reason, TiO<sub>2 </sub>nanomaterials are considered an attractive alternative in applications where biological exposures will occur. Unfortunately, metal oxides on the nanoscale (one dimension < 100 nm) may or may not exhibit the same toxic potential as the original material. A further complicating issue is the effect of modifying or engineering of the nanomaterial to be structurally and geometrically different from the original material.</p> <p>Results</p> <p>TiO<sub>2 </sub>nanospheres, short (< 5 μm) and long (> 15 μm) nanobelts were synthesized, characterized and tested for biological activity using primary murine alveolar macrophages and in vivo in mice. This study demonstrates that alteration of anatase TiO<sub>2 </sub>nanomaterial into a fibre structure of greater than 15 μm creates a highly toxic particle and initiates an inflammatory response by alveolar macrophages. These fibre-shaped nanomaterials induced inflammasome activation and release of inflammatory cytokines through a cathepsin B-mediated mechanism. Consequently, long TiO<sub>2 </sub>nanobelts interact with lung macrophages in a manner very similar to asbestos or silica.</p> <p>Conclusions</p> <p>These observations suggest that any modification of a nanomaterial, resulting in a wire, fibre, belt or tube, be tested for pathogenic potential. As this study demonstrates, toxicity and pathogenic potential change dramatically as the shape of the material is altered into one that a phagocytic cell has difficulty processing, resulting in lysosomal disruption.</p

    Инфекционная составляющая и иммунопатология при хронических воспалительных заболеваниях слизистой оболочки гастродуоденальной области

    Get PDF
    Выявлено коинфицирование слизистой оболочки желудочно−кишечного тракта Helicobacter pylori и вирусами группы герпеса у больных хроническим гастритом, язвенной болезнью желудка и двенадцатиперстной кишки. Проведена оценка общих и специфических иммунных реакций организма на указанные инфекционные агенты. Обнаруженные изменения в клеточном и гуморальном звене иммунитета могут свидетельствовать об обусловленном ими системном иммунопатологическом процессе.Co−infection of the gastrointestinal mucosa with Helicobacter pylori and herpes viruses in patients with chronic gastritis, gastric and duodenal ulcer was revealed. General and specific immune reactions of the organism to the above agents were evaluated. The revealed changes in the cellular and humoral immunity can suggest systemic immunopathological process
    corecore