63 research outputs found

    Differences in serum IL-6 response after 1°C rise in core body temperature in individuals with spinal cord injury and cervical spinal cord injury during local heat stress

    Get PDF
    Objectives: Passive rise in core body temperature achieved by head-out hot water immersion (HHWI) results in acute increases in serum interleukin (IL)-6 but no change in plasma adrenaline in patients with cervical spinal cord injury (CSCI). The purpose of the present study was to determine the mechanism of heat stress-induced increase in serum IL-6. Setting: A cross-sectional study. Methods: The study subjects were 9 with CSCI, 10 with thoracic and lumbar spinal cord injury (TLSCI) and 8 able-bodied (AB) subjects. Time since injury was 16.4±4.1 years in TLSCI and 16.1±3.4 years in CSCI. Subjects were subjected to lower-body heat stress (LBH) by wearing a hot water-perfused suit until 1°C increase in core temperature. The levels of serum IL-6, plasma adrenaline, tumor necrosis factor (TNF)-α, C-reactive protein (CRP), and counts of blood cells were measured at normothermia and after LBH. Results: Serum IL-6 concentrations increased significantly immediately after LBH in all the three groups. ΔIL-6% was lower in CSCI subjects compared with AB subjects. Plasma adrenaline concentrations significantly increased after LBH in AB and TLSCI subjects, but did not change throughout the study in CSCI subjects. Cardiac output and heart rate increased at the end of LBH in all three groups. Conclusion: Under a similar increase in core temperature, ΔIL-6% was lower in the CSCI group compared with the AB group. These findings suggest that the observed rise in IL-6 during hyperthermia is mediated, at least in part, by plasma adrenaline

    Soil carbon stock impacts following reversion of Miscanthus x giganteus and short rotation coppice willow commercial plantations into arable cropping

    Get PDF
    There are posited links between the establishment of perennial bioenergy, such as Short Rotation Coppice (SRC) willow and Miscanthus x giganteus, on low carbon soils and enhanced soil C sequestration. Sequestration provides additional climate mitigation, however, few studies have explored impacts on soil C stocks of bioenergy crop removal, thus the permanence of any sequestered C is unclear. This uncertainty has led some authors to question the handling of soil C stocks with carbon accounting e.g. through LCA. Here we provide additional data for this debate, reporting on the soil C impacts of the reversion (removal and return) to arable cropping of commercial SRC willow and Miscanthus across four sites in the UK, two for each bioenergy crop, with 8 reversions nested within these sites. Using a paired‐site approach, soil C stocks (0–1 m) were compared between 3 and 7 years after bioenergy crop removal. Impacts on soil C stocks varied, ranging from an increase of 70.16 ± 10.81 Mg C ha‐1 7 years after reversion of SRC willow to a decrease of 33.38 ± 5.33 Mg C ha‐1 3 years after reversion of Miscanthus compared to paired arable land. The implications for carbon accounting will depend on the method used to allocate this stock change between current and past land use. However, with, published life cycle assessment values for the lifetime C reduction provided by these crops ranging from 29.50 to 138.55 Mg C ha‐1, the magnitude of these changes in stock are significant. We discuss the potential underlying mechanisms driving variability in soil C stock change, including the age of bioenergy crop at removal, removal methods, and differences in the recalcitrant of the crop residues, and highlight the need to design management methods to limit negative outcomes

    Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia

    Get PDF
    Background: Free-living ungulates are hosts of ixodid ticks and reservoirs of tick-borne microorganisms in central Europe and many regions around the world. Tissue samples and engorged ticks were obtained from roe deer, red deer, fallow deer, mouflon, and wild boar hunted in deciduous forests of south-western Slovakia. DNA isolated from these samples was screened for the presence of tick-borne microorganisms by PCR-based methods. Results: Ticks were found to infest all examined ungulate species. The principal infesting tick was Ixodes ricinus, identified on 90.4% of wildlife, and included all developmental stages. Larvae and nymphs of Haemaphysalis concinna were feeding on 9.6% of wildlife. Two specimens of Dermacentor reticulatus were also identified. Ungulates were positive for A. phagocytophilum and Theileria spp. Anaplasma phagocytophilum was found to infect 96.1% of cervids, 88.9% of mouflon, and 28.2% of wild boar, whereas Theileria spp. was detected only in cervids (94.6%). Importantly, a high rate of cervids (89%) showed mixed infections with both these microorganisms. In addition to A. phagocytophilum and Theileria spp., Rickettsia helvetica, R. monacensis, unidentified Rickettsia sp., Coxiella burnetii, "Candidatus Neoehrlichia mikurensis", Borrelia burgdorferi (s.l.) and Babesia venatorum were identified in engorged I. ricinus. Furthermore, A. phagocytophilum, Babesia spp. and Theileria spp. were detected in engorged H. concinna. Analysis of 16S rRNA and groEL gene sequences revealed the presence of five and two A. phagocytophilum variants, respectively, among which sequences identified in wild boar showed identity to the sequence of the causative agent of human granulocytic anaplasmosis (HGA). Phylogenetic analysis of Theileria 18S rRNA gene sequences amplified from cervids and engorged I. ricinus ticks segregated jointly with sequences of T. capreoli isolates into a moderately supported monophyletic clade. Conclusions: The findings indicate that free-living ungulates are reservoirs for A. phagocytophilum and Theileria spp. and engorged ixodid ticks attached to ungulates are good sentinels for the presence of agents of public and veterinary concern. Further analyses of the A. phagocytophilum genetic variants and Theileria species and their associations with vector ticks and free-living ungulates are required.Fil: Kazimírová, Mária. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Hamšíková, Zuzana. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Spitalská, Eva. Slovak Academy of Sciences. Institute of Virology. Biomedical Research Center,; EslovaquiaFil: Minichová, Lenka. Slovak Academy of Sciences. Institute of Virology. Biomedical Research Center,; EslovaquiaFil: Mahríková, Lenka. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Caban, Radoslav. Široká ; EslovaquiaFil: Sprong, Hein. National Institute for Public Health and Environment.Laboratory for Zoonoses and Environmental Microbiology; Países BajosFil: Fonville, Manoj. National Institute for Public Health and Environment.Laboratory for Zoonoses and Environmental Microbiology; Países BajosFil: Schnittger, Leonhard. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kocianová, Elena. Slovak Academy of Sciences. Institute of Virology. Biomedical Research Center,; Eslovaqui

    Climate change and the rise of the central Asian Silk Roads

    Get PDF
    The final centuries BCE (Before Common Era) saw the main focus of trade between the Far East and Europe switch from the so called Northern Route across the Asian steppes to the classical silk roads. The cities across central Asia flourished and grew in size and importance. While clearly there were political, economic and cultural drivers for these changes, there may also have been a role for changes in climate in this relatively arid region of Asia. Analysis of a new ensemble of snapshot global climate model simulations, run every 250 years over the last 6000 years, allows us to assess the long term climatological changes seen across the central Asian arid region through which the classical Silk Roads run. While the climate is comparatively stable through the Holocene, the fluctuations seen in these simulations match significant cultural developments in the region. From 1500 BCE the deterioration of climate from a transient precipitation peak, along with technological development and the immigration of Aryan nomads, drove a shift towards urbanization and probably irrigation, culminating in the founding of the major cities of Bukhara and Samarkand around 700–500 BCE. Between 1000 and 250 BCE the modelled precipitation in the central Asian arid region undergoes a transition towards wetter climates. The changes in the Western Disturbances, which is the key weather system for central Asian precipitation, provides 10% more precipitation and the increased hydrological resources may provide the climatological foundation for the golden era of Silk Road trade
    corecore