553 research outputs found

    Gamma-ray signatures of annihilation to charged leptons in dark matter substructure

    Get PDF
    Due to their higher concentrations and small internal velocities, Milky Way subhalos can be at least as important as the smooth halo in accounting for the GeV positron excess via dark matter annihilation. After showing how this can be achieved in various scenarios, including in Sommerfeld models, we demonstrate that, in this case, the diffuse inverse-Compton emission resulting from electrons and positrons produced in substructure leads to a nearly-isotropic signal close to the level of the isotropic GeV gamma-ray background seen by Fermi. Moreover, we show that HESS cosmic-ray electron measurements can be used to constrain multi-TeV internal bremsstrahlung gamma rays arising from annihilation to charged leptons.Comment: 8 pages, 4 figures; minor updates to match published versio

    Constraints on dark matter models from a Fermi LAT search for high-energy cosmic-ray electrons from the Sun

    Full text link
    During its first year of data taking, the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope has collected a large sample of high-energy cosmic-ray electrons and positrons (CREs). We present the results of a directional analysis of the CRE events, in which we searched for a flux excess correlated with the direction of the Sun. Two different and complementary analysis approaches were implemented, and neither yielded evidence of a significant CRE flux excess from the Sun. We derive upper limits on the CRE flux from the Sun's direction, and use these bounds to constrain two classes of dark matter models which predict a solar CRE flux: (1) models in which dark matter annihilates to CREs via a light intermediate state, and (2) inelastic dark matter models in which dark matter annihilates to CREs.Comment: 18 pages, 8 figures, accepted for publication in Physical Review D - contact authors: Francesco Loparco ([email protected]), M. Nicola Mazziotta ([email protected]) and Jennifer Siegal-Gaskins ([email protected]

    Searches for Cosmic-Ray Electron Anisotropies with the Fermi Large Area Telescope

    Full text link
    The Large Area Telescope on board the \textit{Fermi} satellite (\textit{Fermi}-LAT) detected more than 1.6 million cosmic-ray electrons/positrons with energies above 60 GeV during its first year of operation. The arrival directions of these events were searched for anisotropies of angular scale extending from ∼\sim 10 ∘^\circ up to 90∘^\circ, and of minimum energy extending from 60 GeV up to 480 GeV. Two independent techniques were used to search for anisotropies, both resulting in null results. Upper limits on the degree of the anisotropy were set that depended on the analyzed energy range and on the anisotropy's angular scale. The upper limits for a dipole anisotropy ranged from ∼0.5\sim0.5% to ∼10\sim10%.Comment: 16 pages, 10 figures, accepted for publication in Physical Review D - contact authors: M.N. Mazziotta and V. Vasileio

    Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems

    Get PDF
    A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud \u

    Dark Matter Annihilation around Intermediate Mass Black Holes: an update

    Full text link
    The formation and evolution of Black Holes inevitably affects the distribution of dark and baryonic matter in the neighborhood of the Black Hole. These effects may be particularly relevant around Supermassive and Intermediate Mass Black Holes (IMBHs), the formation of which can lead to large Dark Matter overdensities, called {\em spikes} and {\em mini-spikes} respectively. Despite being larger and more dense, spikes evolve at the very centers of galactic halos, in regions where numerous dynamical effects tend to destroy them. Mini-spikes may be more likely to survive, and they have been proposed as worthwhile targets for indirect Dark Matter searches. We review here the formation scenarios and the prospects for detection of mini-spikes, and we present new estimates for the abundances of mini-spikes to illustrate the sensitivity of such predictions to cosmological parameters and uncertainties regarding the astrophysics of Black Hole formation at high redshift. We also connect the IMBHs scenario to the recent measurements of cosmic-ray electron and positron spectra by the PAMELA, ATIC, H.E.S.S., and Fermi collaborations.Comment: 12 pages, 7 figures. Invited contribution to NJP Focus Issue on "Dark Matter and Particle Physics

    Most Networks in Wagner's Model Are Cycling

    Get PDF
    In this paper we study a model of gene networks introduced by Andreas Wagner in the 1990s that has been used extensively to study the evolution of mutational robustness. We investigate a range of model features and parameters and evaluate the extent to which they influence the probability that a random gene network will produce a fixed point steady state expression pattern. There are many different types of models used in the literature, (discrete/continuous, sparse/dense, small/large network) and we attempt to put some order into this diversity, motivated by the fact that many properties are qualitatively the same in all the models. Our main result is that random networks in all models give rise to cyclic behavior more often than fixed points. And although periodic orbits seem to dominate network dynamics, they are usually considered unstable and not allowed to survive in previous evolutionary studies. Defining stability as the probability of fixed points, we show that the stability distribution of these networks is highly robust to changes in its parameters. We also find sparser networks to be more stable, which may help to explain why they seem to be favored by evolution. We have unified several disconnected previous studies of this class of models under the framework of stability, in a way that had not been systematically explored before

    A Novel Peptide Enhances Therapeutic Efficacy of Liposomal Anti-Cancer Drugs in Mice Models of Human Lung Cancer

    Get PDF
    Lung cancer is the leading cause of cancer-related mortality worldwide. The lack of tumor specificity remains a major drawback for effective chemotherapies and results in dose-limiting toxicities. However, a ligand-mediated drug delivery system should be able to render chemotherapy more specific to tumor cells and less toxic to normal tissues. In this study, we isolated a novel peptide ligand from a phage-displayed peptide library that bound to non-small cell lung cancer (NSCLC) cell lines. The targeting phage bound to several NSCLC cell lines but not to normal cells. Both the targeting phage and the synthetic peptide recognized the surgical specimens of NSCLC with a positive rate of 75% (27 of 36 specimens). In severe combined immunodeficiency (SCID) mice bearing NSCLC xenografts, the targeting phage specifically bound to tumor masses. The tumor homing ability of the targeting phage was inhibited by the cognate synthetic peptide, but not by a control or a WTY-mutated peptide. When the targeting peptide was coupled to liposomes carrying doxorubicin or vinorelbine, the therapeutic index of the chemotherapeutic agents and the survival rates of mice with human lung cancer xenografts markedly increased. Furthermore, the targeting liposomes increased drug accumulation in tumor tissues by 5.7-fold compared with free drugs and enhanced cancer cell apoptosis resulting from a higher concentration of bioavailable doxorubicin. The current study suggests that this tumor-specific peptide may be used to create chemotherapies specifically targeting tumor cells in the treatment of NSCLC and to design targeted gene transfer vectors or it may be used one in the diagnosis of this malignancy
    • …
    corecore