1,581 research outputs found

    Field-induced structure transformation in electrorheological solids

    Full text link
    We have computed the local electric field in a body-centered tetragonal (BCT) lattice of point dipoles via the Ewald-Kornfeld formulation, in an attempt to examine the effects of a structure transformation on the local field strength. For the ground state of an electrorheological solid of hard spheres, we identified a novel structure transformation from the BCT to the face-centered cubic (FCC) lattices by changing the uniaxial lattice constant c under the hard sphere constraint. In contrast to the previous results, the local field exhibits a non-monotonic transition from BCT to FCC. As c increases from the BCT ground state, the local field initially decreases rapidly towards the isotropic value at the body-centered cubic lattice, decreases further, reaching a minimum value and increases, passing through the isotropic value again at an intermediate lattice, reaches a maximum value and finally decreases to the FCC value. An experimental realization of the structure transformation is suggested. Moreover, the change in the local field can lead to a generalized Clausius-Mossotti equation for the BCT lattices.Comment: Submitted to Phys. Rev.

    Effects of geometric anisotropy on local field distribution: Ewald-Kornfeld formulation

    Full text link
    We have applied the Ewald-Kornfeld formulation to a tetragonal lattice of point dipoles, in an attempt to examine the effects of geometric anisotropy on the local field distribution. The various problems encountered in the computation of the conditionally convergent summation of the near field are addressed and the methods of overcoming them are discussed. The results show that the geometric anisotropy has a significant impact on the local field distribution. The change in the local field can lead to a generalized Clausius-Mossotti equation for the anisotropic case.Comment: Accepted for publications, Journal of Physics: Condensed Matte

    Statistical-mechanical theory of the overall magnetic properties of mesocrystals

    Full text link
    The mesocrystal showing both electrorheological and magnetorheological effects is called electro-magnetorheological (EMR) solids. Prediction of the overall magnetic properties of the EMR solids is a challenging task due to the coexistence of the uniaxially anisotropic behavior and structural transition as well as long-range interaction between the suspended particles. To consider the uniaxial anisotropy effect, we present an anisotropic Kirkwood-Fr\"{o}hlich equation for calculating the effective permeabilities by adopting an explicit characteristic spheroid rather than a characteristic sphere used in the derivation of the usual Kirkwood-Fr\"{o}hlich equation. Further, by applying an Ewald-Kornfeld formulation we are able to investigate the effective permeability by including the structural transition and long-range interaction explicitly. Our theory can reduce to the usual Kirkwood-Fr\"{o}hlich equation and Onsager equation naturally. To this end, the numerical simulation shows the validity of monitoring the structure of EMR solids by detecting their effective permeabilities.Comment: 14 pages, 1 figur

    Isotope Shift Measurements of Stable and Short-Lived Lithium Isotopes for Nuclear Charge Radii Determination

    Get PDF
    Changes in the mean-square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a new laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8 ms lifetime isotope with production rates on the order of only 10,000 atoms/s. The method was applied to all bound isotopes of lithium including the two-neutron halo isotope Li-11 at the on-line isotope separators at GSI, Darmstadt, Germany and at TRIUMF, Vancouver, Canada. We describe the laser spectroscopic method in detail, present updated and improved values from theory and experiment, and discuss the results.Comment: 34 pages, 24 figures, 14 table

    Group classification of the Sachs equations for a radiating axisymmetric, non-rotating, vacuum space-time

    Get PDF
    We carry out a Lie group analysis of the Sachs equations for a time-dependent axisymmetric non-rotating space-time in which the Ricci tensor vanishes. These equations, which are the first two members of the set of Newman-Penrose equations, define the characteristic initial-value problem for the space-time. We find a particular form for the initial data such that these equations admit a Lie symmetry, and so defines a geometrically special class of such spacetimes. These should additionally be of particular physical interest because of this special geometric feature.Comment: 18 Pages. Submitted to Classical and Quantum Gravit

    Interstitials, Vacancies, and Supersolid Order in Vortex Crystals

    Full text link
    Interstitials and vacancies in the Abrikosov phase of clean Type II superconductors are line imperfections, which cannot extend across macroscopic equilibrated samples at low temperatures. We argue that the entropy associated with line wandering nevertheless can cause these defects to proliferate at a sharp transition which will exist if this occurs below the temperature at which the crystal actually melts. Vortices are both entangled and crystalline in the resulting ``supersolid'' phase, which in a dual ``boson'' analog system is closely related to a two-dimensional quantum crystal of He4^4 with interstitials or vacancies in its ground state. The supersolid {\it must} occur for BB×B\gg B_\times, where B×B_\times is the decoupling field above which vortices begin to behave two-dimensionally. Numerical calculations show that interstitials, rather than vacancies, are the preferred defect for Bϕ0/λ2B\gg \phi_0/\lambda_\perp^2, and allow us to estimate whether proliferation also occurs for B\,\lot\,B_\times.The implications of the supersolid phase for transport measurements, dislocation configurations and neutron diffraction are discussed.Comment: 53 pages and 15 figures, available upon request, written in plain TE

    Deconvoluting lung evolution: from phenotypes to gene regulatory networks

    Get PDF
    Speakers in this symposium presented examples of respiratory regulation that broadly illustrate principles of evolution from whole organ to genes. The swim bladder and lungs of aquatic and terrestrial organisms arose independently from a common primordial "respiratory pharynx” but not from each other. Pathways of lung evolution are similar between crocodiles and birds but a low compliance of mammalian lung may have driven the development of the diaphragm to permit lung inflation during inspiration. To meet the high oxygen demands of flight, bird lungs have evolved separate gas exchange and pump components to achieve unidirectional ventilation and minimize dead space. The process of "screening” (removal of oxygen from inspired air prior to entering the terminal units) reduces effective alveolar oxygen tension and potentially explains why nonathletic large mammals possess greater pulmonary diffusing capacities than required by their oxygen consumption. The "primitive” central admixture of oxygenated and deoxygenated blood in the incompletely divided reptilian heart is actually co-regulated with other autonomic cardiopulmonary responses to provide flexible control of arterial oxygen tension independent of ventilation as well as a unique mechanism for adjusting metabolic rate. Some of the most ancient oxygen-sensing molecules, i.e., hypoxia-inducible factor-1alpha and erythropoietin, are up-regulated during mammalian lung development and growth under apparently normoxic conditions, suggesting functional evolution. Normal alveolarization requires pleiotropic growth factors acting via highly conserved cell-cell signal transduction, e.g., parathyroid hormone-related protein transducing at least partly through the Wingless/int pathway. The latter regulates morphogenesis from nematode to mammal. If there is commonality among these diverse respiratory processes, it is that all levels of organization, from molecular signaling to structure to function, co-evolve progressively, and optimize an existing gas-exchange framewor

    Deconvoluting lung evolution: from phenotypes to gene regulatory networks

    Get PDF
    Speakers in this symposium presented examples of respiratory regulation that broadly illustrate principles of evolution from whole organ to genes. The swim bladder and lungs of aquatic and terrestrial organisms arose independently from a common primordial “respiratory pharynx” but not from each other. Pathways of lung evolution are similar between crocodiles and birds but a low compliance of mammalian lung may have driven the development of the diaphragm to permit lung inflation during inspiration. To meet the high oxygen demands of flight, bird lungs have evolved separate gas exchange and pump components to achieve unidirectional ventilation and minimize dead space. The process of “screening” (removal of oxygen from inspired air prior to entering the terminal units) reduces effective alveolar oxygen tension and potentially explains why nonathletic large mammals possess greater pulmonary diffusing capacities than required by their oxygen consumption. The “primitive” central admixture of oxygenated and deoxygenated blood in the incompletely divided reptilian heart is actually co-regulated with other autonomic cardiopulmonary responses to provide flexible control of arterial oxygen tension independent of ventilation as well as a unique mechanism for adjusting metabolic rate. Some of the most ancient oxygen-sensing molecules, i.e., hypoxia-inducible factor-1alpha and erythropoietin, are up-regulated during mammalian lung development and growth under apparently normoxic conditions, suggesting functional evolution. Normal alveolarization requires pleiotropic growth factors acting via highly conserved cell–cell signal transduction, e.g., parathyroid hormone-related protein transducing at least partly through the Wingless/int pathway. The latter regulates morphogenesis from nematode to mammal. If there is commonality among these diverse respiratory processes, it is that all levels of organization, from molecular signaling to structure to function, co-evolve progressively, and optimize an existing gas-exchange framework
    corecore