35 research outputs found

    Observation of a short-lived pattern in the solar chromosphere

    Get PDF
    In this work we investigate the dynamic behavior of inter-network regions of the solar chromosphere. We observed the chromosphere of the quiet Sun using a narrow-band Lyot filter centered at the Ca II K 2v emission peak with a bandpass of 0.3A. We achieved a spatial resolution of on average 0.7" at a cadence of 10s. In the inter-network we find a mesh-like pattern that features bright grains at the vertices. The pattern has a typical spatial scale of 1.95" and a mean evolution time scale of 53s with a standard deviation of 10s. A comparison of our results with a recent three-dimensional radiation hydrodynamical model implies that the observed pattern is of chromospheric origin. The measured time scales are not compatible with those of reversed granulation in the photosphere although the appearance is similar. A direct comparison between network and inter-network structure shows that their typical time scales differ by at least a factor of two. The existence of a rapidly evolving small-scale pattern in the inter-network regions supports the picture of the lower chromosphere as a highly dynamical and intermittent phenomenon.Comment: Letter A&A 4 pages 5 figure

    Morphology and Dynamics of the Low Solar Chromosphere

    Full text link
    The Interferometric Bidimensional Spectrometer (IBIS) installed at the Dunn Solar Telescope of the NSO/SP is used to investigate the morphology and dynamics of the lower chromosphere and the virtually non-magnetic fluctosphere below. The study addresses in particular the structure of magnetic elements that extend into these layers. We choose different quiet Sun regions in and outside coronal holes. In inter-network regions with no significant magnetic flux contributions above the detection limit of IBIS, we find intensity structures with the characteristics of a shock wave pattern. The magnetic flux elements in the network are long lived and seem to resemble the spatially extended counterparts to the underlying photospheric magnetic elements. We suggest a modification to common methods to derive the line-of-sight magnetic field strength and explain some of the difficulties in deriving the magnetic field vector from observations of the fluctosphere.Comment: accepted by ApJ, 16 pages, 8 figure

    The solar chromosphere at high resolution with IBIS. I. New insights from the Ca II 854.2 nm line

    Full text link
    (Abridged) Aims: In this paper, we seek to establish the suitability of imaging spectroscopy performed in the Ca II 854.2 nm line as a means to investigate the solar chromosphere at high resolution. Methods: We utilize monochromatic images obtained with the Interferometric BIdimensional Spectrometer (IBIS) at multiple wavelengths within the Ca II 854.2 nm line and over several quiet areas. We analyze both the morphological properties derived from narrow-band monochromatic images and the average spectral properties of distinct solar features such as network points, internetwork areas and fibrils. Results: The spectral properties derived over quiet-Sun targets are in full agreement with earlier results obtained with fixed-slit spectrographic observations, highlighting the reliability of the spectral information obtained with IBIS. Furthermore, the very narrowband IBIS imaging reveals with much clarity the dual nature of the Ca II 854.2 nm line: its outer wings gradually sample the solar photosphere, while the core is a purely chromospheric indicator. The latter displays a wealth of fine structures including bright points, akin to the Ca II H2V and K2V grains, as well as fibrils originating from even the smallest magnetic elements. The fibrils occupy a large fraction of the observed field of view even in the quiet regions, and clearly outline atmospheric volumes with different dynamical properties, strongly dependent on the local magnetic topology. This highlights the fact that 1-D models stratified along the vertical direction can provide only a very limited representation of the actual chromospheric physics.Comment: 13 pages, 8 figures. Accepted in A&A. Revised version after referee's comments. New Fig. 1 and 7. Higher quality figures in http://www.arcetri.astro.it/~gcauzzi/papers/ibis.caii.pd

    Tracking magnetic bright point motions through the solar atmosphere

    Get PDF
    High-cadence, multiwavelength observations and simulations are employed for the analysis of solar photospheric magnetic bright points (MBPs) in the quiet Sun. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere (ROSA) imager and the Interferometric Bidimensional Spectrometer at the Dunn Solar Telescope. Our analysis reveals that photospheric MBPs have an average transverse velocity of approximately 1 km s−1, whereas their chromospheric counterparts have a slightly higher average velocity of 1.4 km s−1. Additionally, chromospheric MBPs were found to be around 63 per cent larger than the equivalent photospheric MBPs. These velocity values were compared with the output of numerical simulations generated using the MURAM code. The simulated results were similar, but slightly elevated, when compared to the observed data. An average velocity of 1.3 km s−1 was found in the simulated G-band images and an average of 1.8 km s−1 seen in the velocity domain at a height of 500 km above the continuum formation layer. Delays in the change of velocities were also analysed. Average delays of ∼4 s between layers of the simulated data set were established and values of ∼29 s observed between G-band and Ca II K ROSA observations. The delays in the simulations are likely to be the result of oblique granular shock waves, whereas those found in the observations are possibly the result of a semi-rigid flux tube

    Magnetic fields in solar plage regions: insights from high-sensitivity spectropolarimetry

    Full text link
    Plage regions are patches of concentrated magnetic field in the Sun's atmosphere where hot coronal loops are rooted. While previous studies have shed light on the properties of plage magnetic fields in the photosphere, there are still challenges in measuring the overlying chromospheric magnetic fields, which are crucial to understanding the overall heating and dynamics. Here, we utilize high-sensitivity, spectropolarimetric data obtained by the four-meter Daniel K. Inouye Solar Telescope (DKIST) to investigate the dynamic environment and magnetic field stratification of an extended, decaying plage region. The data show strong circular polarization signals in both plage cores and surrounding fibrils. Notably, weak linear polarization signals clearly differentiate between plage patches and the fibril canopy, where they are relatively stronger. Inversions of the Ca II 8542 A˚\mathring{A} spectra show an imprint of the fibrils in the chromospheric magnetic field, with typical field strength values ranging from \sim 200-300 G in fibrils. We confirm the weak correlation between field strength and cooling rates in the lower chromosphere. Additionally, we observe supersonic downflows and strong velocity gradients in the plage periphery, indicating dynamical processes occurring in the chromosphere. These findings contribute to our understanding of the magnetic field and dynamics within plages, emphasizing the need for further research to explore the expansion of magnetic fields with height and the three-dimensional distribution of heating rates in the lower chromosphere.Comment: 17 pages, 8 figures, accepted for publication in ApJ

    Radiative emission of solar features in the Ca II K line: comparison of measurements and models

    Full text link
    We study the radiative emission of various types of solar features, such as quiet Sun, enhanced network, plage, and bright plage regions, identified on filtergrams taken in the Ca II K line. We analysed fulldisk images obtained with the PSPT, by using three interference filters that sample the Ca II K line with different bandpasses. We studied the dependence of the radiative emission of disk features on the filter bandpass. We also performed a NLTE spectral synthesis of the Ca II K line integrated over the bandpass of PSPT filters. The synthesis was carried out by utilizing both the PRD and CRD with the most recent set of semi empirical atmosphere models in the literature and some earlier atmosphere models. We measured the CLV of intensity values for various solar features identified on PSPT images and compared the results obtained with those derived from the synthesis. We find that CRD calculations derived using the most recent quiet Sun model, on average, reproduce the measured values of the quiet Sun regions slightly more accurately than PRD computations with the same model. This may reflect that the utilized atmospheric model was computed assuming CRD. Calculations with PRD on earlier quiet Sun model atmospheres reproduce measured quantities with a similar accuracy as to that achieved here by applying CRD to the recent model. We also find that the median contrast values measured for most of the identified bright features, disk positions, and filter widths are, on average, a factor 1.9 lower than those derived from PRD simulations performed using the recent bright feature models. The discrepancy between measured and modeled values decreases by 12% after taking into account straylight effects on PSPT images. PRD computations on either the most recent or the earlier atmosphere models of bright features reproduce measurements from plage and bright plage regions with a similar accuracy.Comment: 14 pages, 18 figures, accepted by A&

    Magnetic field effects in energy relaxation mediated by Kondo impurities

    Full text link
    We study the energy distribution function of quasiparticles in voltage biased mesoscopic wires in presence of magnetic impurities and applied magnetic field. The system is described by a Boltzmann equation where the collision integral is determined by coupling to spin 1/2 impurities. We derive an effective coupling to a dissipative spin system which is valid well above Kondo temperature in equilibrium or for sufficiently smeared distribution functions in non-equilibrium. For low magnetic field an enhancement of energy relaxation is found whereas for larger magnetic fields the energy relaxation decreases again meeting qualitatively the experimental findings by Anthore et al. (cond-mat/0109297). This gives a strong indication that magnetic impurities are in fact responsible for the enhanced energy relaxation in copper wires. The quantitative comparison, however, shows strong deviations for energy relaxation with small energy transfer whereas the large energy transfer regime is in agreement with our findings.Comment: 14 pages, 8 figure

    DKIST unveils the serpentine topology of quiet Sun magnetism in the photosphere

    Get PDF
    We present the first quiet Sun spectropolarimetric observations obtained with the Visible SpectroPolarimeter at the 4 m Daniel K. Inouye Solar Telescope. We recorded observations in a wavelength range that includes the magnetically sensitive Fe i 6301.5/6302.5 Å doublet. With an estimated spatial resolution of 0farcs08, this represents the highest spatial resolution full-vector spectropolarimetric observations ever obtained of the quiet Sun. We identified 53 small-scale magnetic elements, including 47 magnetic loops and four unipolar magnetic patches, with linear and circular polarization detected in all of them. Of particular interest is a magnetic element in which the polarity of the magnetic vector appears to change three times in only 400 km and which has linear polarization signals throughout. We find complex Stokes V profiles at the polarity inversion lines of magnetic loops and discover degenerate solutions, as we are unable to conclusively determine whether these arise due to gradients in the atmospheric parameters or smearing of opposite-polarity signals. We analyze a granule that notably has linear and circular polarization signals throughout, providing an opportunity to explore its magnetic properties. On this small scale, we see the magnetic field strength range from 25 G at the granular boundary to 2 kG in the intergranular lane (IGL) and sanity-check the values with the weak and strong field approximations. A value of 2 kG in the IGL is among the highest measurements ever recorded for the internetwork

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
    corecore