122 research outputs found
SAM: A new GHz sampling ASIC for the H.E.S.S.-II front-end electronics
The H.E.S.S.-II front-end electronics, with its 20 GeV energy threshold, will require a much higher acquisition rate capability and a larger dynamic range than was relevant for H.E.S.S.-I. These constraints led to the development of a new ASIC, called SAM for Swift Analogue Memory, to replace the ARS used for H.E.S.S.-I. The SAM chip features 2 channels for the low and high gain outputs of a PMT, each channel having a depth of 256 analogue memory cells. The sampling frequency is adjustable from 0.7 up to 2 GS/s and the read-out time for one event is decreased from 275 down to 2.3 μs. The SAM input bandwidth and dynamic range are increased up to 300 MHz and more than 11 bits, respectively
A major electronics upgrade for the H.E.S.S. Cherenkov telescopes 1-4
The High Energy Stereoscopic System (H.E.S.S.) is an array of imaging
atmospheric Cherenkov telescopes (IACTs) located in the Khomas Highland in
Namibia. It consists of four 12-m telescopes (CT1-4), which started operations
in 2003, and a 28-m diameter one (CT5), which was brought online in 2012. It is
the only IACT system featuring telescopes of different sizes, which provides
sensitivity for gamma rays across a very wide energy range, from ~30 GeV up to
~100 TeV. Since the camera electronics of CT1-4 are much older than the one of
CT5, an upgrade is being carried out; first deployment was in 2015, full
operation is planned for 2016. The goals of this upgrade are threefold:
reducing the dead time of the cameras, improving the overall performance of the
array and reducing the system failure rate related to aging. Upon completion,
the upgrade will assure the continuous operation of H.E.S.S. at its full
sensitivity until and possibly beyond the advent of CTA. In the design of the
new components, several CTA concepts and technologies were used and are thus
being evaluated in the field: The upgraded read-out electronics is based on the
NECTAR readout chips; the new camera front- and back-end control subsystems are
based on an FPGA and an embedded ARM computer; the communication between
subsystems is based on standard Ethernet technologies. These hardware solutions
offer good performance, robustness and flexibility. The design of the new
cameras is reported here.Comment: Proceedings of the 34th International Cosmic Ray Conference, 30 July-
6 August, 2015, The Hague, The Netherland
The camera of the fifth H.E.S.S. telescope. Part I: System description
In July 2012, as the four ground-based gamma-ray telescopes of the H.E.S.S.
(High Energy Stereoscopic System) array reached their tenth year of operation
in Khomas Highlands, Namibia, a fifth telescope took its first data as part of
the system. This new Cherenkov detector, comprising a 614.5 m^2 reflector with
a highly pixelized camera in its focal plane, improves the sensitivity of the
current array by a factor two and extends its energy domain down to a few tens
of GeV.
The present part I of the paper gives a detailed description of the fifth
H.E.S.S. telescope's camera, presenting the details of both the hardware and
the software, emphasizing the main improvements as compared to previous
H.E.S.S. camera technology.Comment: 16 pages, 13 figures, accepted for publication in NIM
NectarCAM : a camera for the medium size telescopes of the Cherenkov Telescope Array
NectarCAM is a camera proposed for the medium-sized telescopes of the
Cherenkov Telescope Array (CTA) covering the central energy range of ~100 GeV
to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the
heart of which is a GHz sampling Switched Capacitor Array and a 12-bit Analog
to Digital converter. The camera will be equipped with 265 7-photomultiplier
modules, covering a field of view of 8 degrees. Each module includes the
photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and
Ethernet transceiver. The recorded events last between a few nanoseconds and
tens of nanoseconds. The camera trigger will be flexible so as to minimize the
read-out dead-time of the NECTAr chips. NectarCAM is designed to sustain a data
rate of more than 4 kHz with less than 5\% dead time. The camera concept, the
design and tests of the various subcomponents and results of thermal and
electrical prototypes are presented. The design includes the mechanical
structure, cooling of the electronics, read-out, clock distribution, slow
control, data-acquisition, triggering, monitoring and services.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
The CAT Imaging Telescope for Very-High-Energy Gamma-Ray Astronomy
The CAT (Cherenkov Array at Themis) imaging telescope, equipped with a
very-high-definition camera (546 fast phototubes with 0.12 degrees spacing
surrounded by 54 larger tubes in two guard rings) started operation in Autumn
1996 on the site of the former solar plant Themis (France). Using the
atmospheric Cherenkov technique, it detects and identifies very high energy
gamma-rays in the range 250 GeV to a few tens of TeV. The instrument, which has
detected three sources (Crab nebula, Mrk 421 and Mrk 501), is described in
detail.Comment: 24 pages, 15 figures. submitted to Elsevier Preprin
The Trigger System of the H.E.S.S. Telescope Array
H.E.S.S. -- The High Energy Stereoscopic System-- is a new system of large
atmospheric Cherenkov telescopes for GeV/TeV Gamma-ray astronomy. This paper
describes the trigger system of H.E.S.S. with emphasis on the multi-telescope
array level trigger. The system trigger requires the simultaneous detection of
air-showers by several telescopes at the hardware level. This requirement
allows a suppression of background events which in turn leads to a lower system
energy threshold for the detection of Gamma-rays. The implementation of the
H.E.S.S. trigger system is presented along with data taken to characterise its
performance.Comment: 20 pages, 12 figures, Accepted for publication in Astroparticle
Physic
Analysis of test beam data taken with a prototype of TPC with resistive Micromegas for the T2K Near Detector upgrade
In this paper we describe the performance of a prototype of the High Angle
Time Projection Chambers (HA-TPCs) that are being produced for the Near
Detector (ND280) upgrade of the T2K experiment. The two HA-TPCs of ND280 will
be instrumented with eight Encapsulated Resistive Anode Micromegas (ERAM) on
each endplate, thus constituting in total 32 ERAMs. This innovative technique
allows the detection of the charge emitted by ionization electrons over several
pads, improving the determination of the track position. The TPC prototype has
been equipped with the first ERAM module produced for T2K and with the HA-TPC
readout electronics chain and it has been exposed to the DESY Test Beam in
order to measure spatial and dE/dx resolution. In this paper we characterize
the performances of the ERAM and, for the first time, we compare them with a
newly developed simulation of the detector response. Spatial resolution better
than 800 and dE/dx resolution better than 10% are observed for
all the incident angles and for all the drift distances of interest. All the
main features of the data are correctly reproduced by the simulation and these
performances fully fulfill the requirements for the HA-TPCs of T2K
Characterization of Charge Spreading and Gain of Encapsulated Resistive Micromegas Detectors for the Upgrade of the T2K Near Detector Time Projection Chambers
An upgrade of the near detector of the T2K long baseline neutrino oscillation
experiment is currently being conducted. This upgrade will include two new Time
Projection Chambers, each equipped with 16 charge readout resistive Micromegas
modules. A procedure to validate the performance of the detectors at different
stages of production has been developed and implemented to ensure a proper and
reliable operation of the detectors once installed. A dedicated X-ray test
bench is used to characterize the detectors by scanning each pad individually
and to precisely measure the uniformity of the gain and the deposited energy
resolution over the pad plane. An energy resolution of about 10% is obtained. A
detailed physical model has been developed to describe the charge dispersion
phenomena in the resistive Micromegas anode. The detailed physical description
includes initial ionization, electron drift, diffusion effects and the readout
electronics effects. The model provides an excellent characterization of the
charge spreading of the experimental measurements and allowed the simultaneous
extraction of gain and RC information of the modules
Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA
Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project
In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory
- …