179 research outputs found

    Waltz - An exploratory visualization tool for volume data, using multiform abstract displays

    Get PDF
    Although, visualization is now widely used, misinterpretations still occur. There are three primary solutions intended to aid a user interpret data correctly. These are: displaying the data in different forms (Multiform visualization); simplifying (or abstracting) the structure of the viewed information; and linking objects and views together (allowing corresponding objects to be jointly manipulated and interrogated). These well-known visualization techniques, provide an emphasis towards the visualization display. We believe however that current visualization systems do not effectively utilise the display, for example, often placing it at the end of a long visualization process. Our visualization system, based on an adapted visualization model, allows a display method to be used throughout the visualization process, in which the user operates a 'Display (correlate) and Refine' visualization cycle. This display integration provides a useful exploration environment, where objects and Views may be directly manipulated; a set of 'portions of interest' can be selected to generate a specialized dataset. This may subsequently be further displayed, manipulated and filtered

    The distribution of ctenophora in the Patuxent estuary during the summer of 1958

    Get PDF
    Investigation of Ctenophores in the Chesapeake Bay area, includes some aspects of their life history, growth, reproduction, feeding and food habits, abundance and distribution. the purpose of the entire project is to supplement and add to the biological knowledge and understanding of ctenophores as a group and of the several individual species found int he area to be studied. Includes possible factors involved and implications also being looked at. (PDF contains 33 pages

    Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture

    Get PDF
    © 2015 The Authors. In Microbial Fuel Cells (MFCs), the recovery of water can be achieved with the help of both active (electro-osmosis), and passive (osmosis) transport pathways of electrolyte through the semi-permeable selective separator. The electrical current-dependent transport, results in cations and electro-osmotically dragged water molecules reaching the cathode. The present study reports on the production of catholyte on the surface of the cathode, which was achieved as a direct result of electricity generation using MFCs fed with wastewater, and employing Pt-free carbon based cathode electrodes. The highest pH levels (>13) of produced liquid were achieved by the MFCs with the activated carbon cathodes producing the highest power (309 μW). Caustic catholyte formation is presented in the context of beneficial cathode flooding and transport mechanisms, in an attempt to understand the effects of active and passive diffusion. Active transport was dominant under closed circuit conditions and showed a linear correlation with power performance, whereas osmotic (passive) transport was governing the passive flux of liquid in open circuit conditions. Caustic catholyte was mineralised to a mixture of carbonate and bicarbonate salts (trona) thus demonstrating an active carbon capture mechanism as a result of the MFC energy-generating performance. Carbon capture would be valuable for establishing a carbon negative economy and environmental sustainability of the wastewater treatment process

    When temporal prediction errs:ERP responses to delayed action-feedback onset

    Get PDF
    Sensory suppression effects observed in electroencephalography (EEG) index successful predictions of the type and timing of self-generated sensory feedback. However, it is unclear how precise the timing prediction of sensory feedback is, and how temporal delays between an action and its sensory feedback affect perception. The current study investigated how prediction errors induced by delaying tone onset times affect the processing of sensory feedback in audition. Participants listened to self-generated (via button press) or externally generated tones. Self-generated tones were presented either without or with various delays (50, 100, or 250 ms; in 30% of trials). Comparing listening to externally generated and self-generated tones resulted in action-related P50 amplitude suppression to tones presented immediately or 100 ms after the button press. Subsequent ERP responses became more sensitive to the type of delay. Whereas the comparison of actual and predicted sensory feedback (N1) tolerated temporal uncertainty up to 100 ms, P2 suppression was modulated by delay in a graded manner: suppression decreased with an increase in sensory feedback delay. Self-generated tones occurring 250 ms after the button press additionally elicited an enhanced N2 response. These findings suggest functionally dissociable processes within the forward model that are affected by the timing of sensory feedback to self-action: relative tolerance of temporal delay in the P50 and N1, confirming previous results, but increased sensitivity in the P2. Further, they indicate that temporal prediction errors are treated differently by the auditory system: only delays that occurred after a temporal integration window (∼100 ms) impact the conscious detection of altered sensory feedback

    Volatile particles formation during PartEmis: a modelling study

    Get PDF
    A modelling study of the formation of volatile particles in a combustor exhaust has been carried out in the frame of the PartEmis European project. A kinetic model has been used in order to investigate nucleation efficiency of the H<sub>2</sub>O-H<sub>2</sub>SO<sub>4</sub> binary mixture in the sampling system. A value for the fraction <IMG WIDTH='10' HEIGHT='13' ALIGN='BOTTOM' BORDER='0' src='http://www.atmos-chem-phys.net/4/439/2004/acp-4-439-img1.gif' ALT='varepsilonvarepsilon'> of the fuel sulphur S(IV) converted into S(VI) has been indirectly deduced from comparisons between model results and measurements. In the present study, <IMG WIDTH='10' HEIGHT='13' ALIGN='BOTTOM' BORDER='0' src='http://www.atmos-chem-phys.net/4/439/2004/acp-4-439-img1.gif' ALT='varepsilonvarepsilon'> ranges between roughly 2.5% and 6%, depending on the combustor settings and on the value assumed for the parameter describing sulphuric acid wall losses. Soot particles hygroscopicity has also been investigated as their activation is a key parameter for contrail formation. Growth factors of monodisperse particles exposed to high relative humidity (95%) have been calculated and compared with experimental results. The modelling study confirms that the growth factor increases as the soot particle size decreases
    • …
    corecore