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a b s t r a c t

In Microbial Fuel Cells (MFCs), the recovery of water can be achieved with the help of both active
(electro-osmosis), and passive (osmosis) transport pathways of electrolyte through the semi-permeable
selective separator. The electrical current-dependent transport, results in cations and electro-osmotically
dragged water molecules reaching the cathode. The present study reports on the production of catholyte
on the surface of the cathode, which was achieved as a direct result of electricity generation using MFCs
fed with wastewater, and employing Pt-free carbon based cathode electrodes. The highest pH levels
(>13) of produced liquid were achieved by the MFCs with the activated carbon cathodes producing the
highest power (309 mW). Caustic catholyte formation is presented in the context of beneficial cathode
flooding and transport mechanisms, in an attempt to understand the effects of active and passive
diffusion. Active transport was dominant under closed circuit conditions and showed a linear correlation
with power performance, whereas osmotic (passive) transport was governing the passive flux of liquid in
open circuit conditions. Caustic catholyte was mineralised to a mixture of carbonate and bicarbonate
salts (trona) thus demonstrating an active carbon capture mechanism as a result of the MFC energy-
generating performance. Carbon capture would be valuable for establishing a carbon negative economy
and environmental sustainability of the wastewater treatment process.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Addressing water scarcity and sanitation problems requires new
methods of purifying water at lower costs and with less energy,
whilst at the same time minimising the use of chemicals and their
impact on the environment (Shannon et al., 2008). One method is
water re-use and reclamation, where water is captured directly
from industrial or municipal waste streams. Wastewater treatment
is energy intensive, thus capturing part of this energy from waste
and reclaiming the water would lower the total energy re-
quirements. Novel technology platforms such as Microbial Fuel
, Bristol Robotics Laboratory,
K.
, ioannis.ieropoulos@brl.ac.uk

r Ltd. This is an open access article
Cells that use bacteria, capable of producing electric current thus
recovering energy from wastewater, are particularly attractive.
Research in the field of Bioelectrochemical Systems (BES) has
focused on utilising compounds found in wastewater for the pro-
duction of bioelectricity by Microbial Fuel Cells (MFCs), or biosyn-
thesis of various compounds using Microbial Electrolysis Cells
(MECs). On the one hand MFCs generate electricity, and on the
other hand MECs require external electrical input to facilitate the
electrolysis process for valuable product recovery such as hydrogen
gas (Call and Logan, 2008), caustic soda (Pikaar et al., 2011; Rabaey
et al., 2010) hydrogen peroxide (Rozendal et al., 2009) or acetate
(Xafenias and Mapelli, 2014). This is an important area that is
already attractingmuch attention. Regardless of the approach, cost-
effective reactor designs andmaterials are urgently needed for field
trials and large-scale implementation. To improve the slow kinetics
of the electrochemical oxygen reduction reaction (ORR), various
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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catalysts are usually being employed (Wang et al., 2014). Platinum
(Pt) for example, has been widely used in chemical fuel cells due to
its high catalytic performance at low pH (Erable et al., 2009),
however due to its high cost, in addition to relatively fast deacti-
vation in the presence of pollutants such as sulphur, other alter-
natives are being explored. Some of these approaches include
chemical (Haoran et al., 2014), enzymatic (Santoro et al., 2013a),
microbial catalysts (Erable et al., 2012) or Non-Pt electrode modi-
fication to improve the performance (Ghasemi et al., 2011; Lefebvre
et al., 2009; Santoro et al., 2012, 2013b). The electrochemistry of the
ORR has been thoroughly studied in the development of chemical
fuel cells (Gasteiger et al., 2005; Neyerlin et al., 2007). Complex
mechanisms are dependent on the pH conditions, proceeding in the
4-electron or 2-electron (peroxide) pathways forming as a final
product H2O (in acidic conditions) or OH� (in alkaline conditions),
as illustrated in Table 1. Generally, the 4-electron pathway appears
to be predominant on noble metal catalysts (Kinoshita, 1988),
whilst the peroxide pathway is more common on carbon based
electrodes (Kinoshita, 1988).

A similarity between chemical and biological fuel cells is rep-
resented by the water fluxes taking place across the membrane.
The water distribution in chemical fuel cells is influenced by the
tendency of protonic currents to transport water molecules from
the anode to the cathode via electro-osmotic drag (Larminie and
Dicks, 2003). As a result, an excess of water could cause the
decrease of the three phases interface (TPI), flooding the entire
electrode and not allowing the oxygen in gas phase to reach the
catalytic sites. Therefore the water content in Proton Exchange
Membrane fuel cells, is strictly controlled and the water man-
agement is a significant aspect to be considered and one of the
most important challenges (Larminie and Dicks, 2003; Park and
Caton, 2008).

In wastewater-based biological fuel cells, studying water
transport is important as electro-osmosis might function as an
active filtration process and lead to water recovery from waste.

In open to air cathodeMFCs, Kim et al. observed that anolyte loss
varies with external resistance due to ionic flux driving the electro-
osmotic transport of water and keeping the cathode hydrated (Kim
et al., 2009). The transfer of ions through the cation-exchange
membrane plays a major role in the charge-balancing ion flux
from the anode into the cathodic compartment (Kim et al., 2009).
The formation of OH� at the cathode during the ORR, leads to a pH
gradient between the anode and the cathode compartment (Zhao
et al., 2006). Whilst the electro-osmotic drag represents an active
transport of water from the anode to the cathode, a passive flux
through forward osmosis occurs simultaneously, dragging water
and other cations to the cathode (in addition to protons). The
process of forward osmosis (FO) is natural, where the driving force
is the high solute concentration solution (draw solution) that flows
along one side of the membrane and low solute concentration (feed
Table 1
Oxygen reduction reaction pathways (adapted from Kinoshita-Ref. (Kinoshita, 1988)).

Conditions Pathway

Acidic 4-electron pathway
2-electron (peroxide pathway)

Alkaline 4-electron pathway
2-electron (peroxide pathway)
solution) to the other. Water transport occurs passively, hence the
FO process is less energy intensive than Reverse Osmosis (RO),
despite the fact that it is slower (McCutcheon and Elimelech, 2006).
In forward osmosis, the use of catholyte of high salt concentration is
acting as a drag solution, passively extracting water from the low to
the high concentration (Zhang et al., 2011).

Cathode flooding has been observed in MFCs (Kim et al., 2009;
Zhuang et al., 2009) and it can serve as a method for extraction of
water, salts and carbon capture (Gajda et al., 2014a, 2015), where
the newly produced caustic catholyte is the important by-product
of the MFC operation. Therefore, it is important to study the wa-
ter transport phenomenon in light of the chemical carbon capture
opportunities that the process could bring to the microbial fuel cell
technology, and in general into a sustainable wastewater treatment
processes.

Low-cost and mechanically robust air-cathodes that can achieve
good performance, is urgently required for practical MFC applica-
tions. Activated carbon and Microporous Layer (MPL) coatings as
well as the carbon fibres are cost effective cathode electrodes for
MFCs with an added benefit of catholyte recovery (Gajda et al.,
2014a,b). In this study, the main water fluxes occurring across the
membrane that produced a net liquid catholyte in MFC, are
described. This work aims to better understand water transport in a
Microbial Fuel Cell system and present the bioelectrosynthesis of
alkaline compounds directly onto the cathode surface as a non-
limiting and highly beneficial recovery. It follows the previous
work describing the production of catholyte on the surface of the
cathode electrode, whilst generating electricity, using MFCs fed
with wastewater and employing Pt-free carbon-based electrodes
(Gajda et al., 2014a).

The current study is investigating the effect of electro-osmotic
drag and osmotic pressure on the MFC water transport. Moreover,
it is aiming to demonstrate the feasibility of MFC electricity pro-
duction with simultaneous bioelectrosynthesis of caustic compo-
sition. This is particularly important for carbon capture and driving
innovation in technologies for stabilising carbon dioxide levels in
the atmosphere.

2. Materials and methods

2.1. MFC design and operation

Twelve MFC reactors comprised 25 mL anode and 25 mL
cathode chambers were employed, as previously described (Gajda
et al., 2013), separated by a CMI-7000 cation exchange membrane
(Membranes International, USA). Anode electrodes were made of
carbon fibre veil with a carbon loading of 20 g/m2 (PRF Composite
Materials, Dorset, UK) and had a total surface area of 270 cm2,
folded into 3D rectangular cuboids (geometric surface area of
17 cm3) in order to fit into the chamber and be fully immersed in
Reaction E0 (vs. SHE) [V]

O2 þ 4Hþ þ 4e� / 2H2O 1.229
O2 þ 2Hþ þ 2e� / H2O2 0.67
Followed by reduction of peroxide:
H2O2 þ 2Hþ þ 2e� / 2H2O
or decomposition:
2H2O2 / 2H2O þ O2

1.77

O2 þ 2H2O þ 4e� / 4OH� 0.401
O2 þ H2Oþ 2e�/HO�

2 þ OH� �0.065
Followed by reduction of peroxide:
HO�

2 þ H2Oþ 2e�/3OH�

or decomposition:
2HO�

2 /2OH� þ O2

0.867
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the anolyte fluid. The pre-established anode half cells, initially
inoculated with activated sewage sludge at neutral pH (Wessex
Water, Saltford, UK), were connected to the 1 L anolyte reservoir
to recirculate the feedstock at a constant flow rate of 48 mL/h and
to maintain steady state. It was periodically supplemented with
fresh sludge mixed with 20 mM sodium acetate used as feedstock.
Table 2 describes four types of exposed-to-air cathode electrodes
employed in experiments. All cathode electrodes were mechani-
cally pressed against the membrane to maintain good physical
contact and enclosed inside the acrylic cathode chamber. The
projected contact area was 10 cm2. Cathode chambers were kept
empty and tightly sealed (in order to limit evaporation losses) but
not airtight thus permeable to oxygen. The same folded carbon
veil (CV) electrode used as an anode, was also used as the un-
modified control for the cathode investigation and was the only 3-
dimensional cathode electrode used. Microporous layer on carbon
cloth (MPL) and the activated carbon (AC) was prepared as pre-
viously described (Santoro et al., 2012, 2014). The cathode
chamber had a standard, sealed syringe (5 mL capacity) attached
to the bottom, to allow collection of the produced catholyte. All
12 MFCs were divided in 4 experimental triplicates of the cathode
electrode tested (Table 2). No metal-based catalysts or buffers
were used.

2.2. Analysis of the accumulated catholyte

The catholyte has formed directly on the surface of the electrode
and the accumulated liquid was removed by gravitational dripping
into sealed collection syringes. Catholyte samples were collected
from the cathode collection syringes after 7-day experimental pe-
riods, under closed and open circuit conditions.

Conductivity was measured with a 470 Jenway conductivity
meter (Camlab, UK) and pH with a Hanna 8424 pH meter (Hanna,
UK). Salt crystals were observed under a digital microscope KH-
7700 (Hirox, Japan). Samples collected under closed circuit condi-
tions (1 mL) were left to evaporate to determine the elements
present in the crystalline salt deposits. Elemental mapping was
performed using the energy dispersive X-ray spectroscopic unit
(EDX) (Philips XL30 SEM) with detection limits of 0.1e100% wt. The
phase composition of crystallised salts was determined using X-ray
diffraction (XRD) powder measurements, performed on a Bruker
D8 Advance Diffractometer, with the results analysed using an EVA
software package (Bruker, UK).

3. Results and discussion

3.1. Power performance and catholyte generation

The MFCs were tested under the same external load (300 U) and
their performance is shown in Fig. 1. A stable performance was
recorded over a period of 7 days, with the average output from
three replicates for AC being 309 ± 50 mW (1013 ± 86 mA), for CV
MPL 161 ± 53 mW(726 ± 120 mA), for MPL 91 ± 20 mW(551 ± 60 mA)
and for CV (control) 81 ± 23 mW (515 ± 102 mA). The results are
consistent with previous work (Gajda et al., 2014a) showing the
activated carbon cathode to possess superior performance in a
Table 2
Types of electrodes in the open to air cathode half cells.

Electrode tested Electrode material

CV Carbon veil (Control) folded
MPL Carbon cloth with microporous layer (MPL)
CV MPL Carbon veil with microporous layer (MPL)
AC Carbon cloth with activated carbon layer
similar configuration. Activated carbon based materials have
shown good catalytic properties for ORR in MFCs (Santoro et al.,
2013b, 2014) During this stable operation, the formation of water
was observed as seen in Fig. 2. The droplets had been dripping into
the collection syringes, avoiding accumulation directly onto the
electrode surface, therefore the steady state of power generation
had not been negatively affected by the catholyte.

3.2. Catholyte volume in relation to power performance

The formation of droplets was observed on the surface of carbon
cathodes and further accumulation of the catholyte was collected
and analysed. A previous study suggested that the catholyte accu-
mulation is a function of MFC performance (Gajda et al., 2014a)
therefore it was attempted to plot the current level vs volume of
accumulated liquid (Fig. 3). The cathode flooding has been reported
to reduce MFC performance (Zhang et al., 2013) however, here the
power (current) performance was (i) stable as shown in Fig. 1 and
(ii) directly proportional to the amount of liquid produced (Fig. 3).
The catholyte has been removed by gravity and collected in
external vessel (syringe), therefore, flooding and further accumu-
lation leading to cathode chamber being filled with liquid were
avoided. The design prevented the electrode from dying out, as it
was enclosed in the empty chamber, which also avoided salt build-
up that was being washed out by the formed droplets. It is sus-
pected that the MFC-generated catholyte provided sufficient hy-
dration for the ORR and allowed effective oxygen exchange.

Fig. 3 shows a relatively strong correlation (R2 ¼ 0.8277) of
current performance to the volume of catholyte generated for 9
points (3 different cathodes in triplicates). From this correlation, CV
has been considered as an outlier (red points). It has also been
observed that the least performing CV was producing relatively
more catholyte in comparison to the other 2-dimensional cathodes
despite the lower current output. The 3D structure was probably
acting like a sponge absorbing the liquid and when pressed, it
released excess catholyte. Therefore, it was suspected that the
ability of the folded CV “sponge” to absorb the catholyte is causing
the osmotic pressure to drive the water transport from the anode
(lower salt concentration) to the cathode (higher salt concentra-
tion) similar to the forward osmosis in OsMFCs (Zhang et al., 2011).

In order to better understand the mechanisms, the total volume
of catholyte has been divided into two main contributors: i)
electro-osmotic drag (Vdrag) and ii) osmotic pressure (Vosm). Natural
evaporation has been neglected as the cathode chamber was
sealed.

Vcath ¼ Vdrag þ Vosm (1)

Where:
Vcath e The total catholyte produced (under external load)
Vdrag e Catholyte actively transported by electroosmotic drag

and synthesised via ORR.
Vosm e Catholyte transported via osmotic pressure (under open

circuit)
To evaluate this assumption, MFCs had been left in open circuit

(OCP) for another 7 days and the relative amount of catholyte was
Cathode type Cathode projected area

3D 270 cm2 (folded) 10 cm2

2D 10 cm2 10 cm2

2D 10 cm2 10 cm2

2D 10 cm2 10 cm2



Fig. 1. Power performance of all tested MFCs (mean values).

Fig. 2. Catholyte formation in situ as droplets on both the 2D (left) and folded 3D
(right) electrodes; catholyte droplets are more visible on the 2D surface.

Fig. 3. Catholyte produced under the 300 U external resistor over 7 days plotted
against MFC current (mA) performance.
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collected. This passive movement of electrolyte was governed by
the local water concentration gradient and osmotic pressure. The
results showed that the 3-dimensional CV “sponge” electrodes
produced relatively the most catholyte (Fig. 4a). Values for the
volumes of the collected catholyte in OCP were inserted into the
rearranged equation (1):
Vdrag ¼ Vcath � Vosm

Fig. 4b shows the relationship between the volume of electro-
osmotically transported catholyte, i.e. the difference between the
overall catholyte collected and the volume collected due to
osmosis, and is shown that it is directly correlated with the current
generation. Current would normally be used as a more accurate
correlation of electrochemical reactions between the rate of elec-
tron transfer and the rate of catholyte formation, however theMFCs
are presented herein as energy generators, and therefore correla-
tionwith power is equally important. In contrast with Fig. 3, where
CV MFCs were considered outliers, in this case, all the conditions
were considered and plotted.

It is assumed that the feedstock solution in the anode chamber
was making contact with the cathode electrode through the
membrane transferring a mixture of ions and water. During MFC
operation, ions are being actively transported dragging water
molecules with them. Due to the produced catholyte, it is now
possible to determine this transport as it only has been reported
previously as net water loss (Kim et al., 2009; Zhuang et al., 2009)
linking the water loss in open circuit potential to natural evapo-
ration (Kim et al., 2009).
3.3. Catholyte properties

The quality of the formed catholyte had been investigated in
terms of pH and conductivity measurements. The pH was very
alkaline ranging between 10.61 and 13.23 (Fig. 5). It can be seen
that the highest pH levels (>13) were recorded by the cells pro-
ducing higher current. As previously described, the cathode half
reaction resulted in OH- groups that accumulate on the cathode
and contribute to increase the pH (Gajda et al., 2014a,b; Popat et al.,
2012), especially in the vicinity of the electrode using microelec-
trodes, to determine the active pathway for oxygen reduction
(Babauta et al., 2014, 2013). For this reason, a form of linear cor-
relation can be seen between pH of collected catholyte and
generated current (Fig. 5). It was observed that because the cathode
chamber is sealed and empty, the catholyte sampling of accumu-
lated liquid in the syringe might affect the pH, therefore it is
possible that the 2 samples with a significantly lower pH (the
outliers) have had the sampling syringes not fully airtight and the
active catholyte would be buffered by atmospheric CO2. Anodic pH
in the feedstock reservoir supplementing all MFCs had increased
from initially neutral to 9.21 and it might be related to



Fig. 4. A) Liquid volume recovered for osmotic pressure under open circuit conditions, B) calculated catholyte volume transported via the electro-osmotic drag in relation to current
generation shows a linear relationship.

Fig. 5. Correlation between pH of produced catholyte under load showing gradual increase with current generated (outliers marked in red). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Conductivity of produced catholyte under load conditions shows linear increase
with current.
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electrochemical reactions in the air-cathode changing the electro-
lyte properties (He et al., 2008).

These alkaline properties have been previously investigated in
similar cathode half-cell configurations however with the air inlets
open to atmospheric air (Gajda et al., 2014a). Here, as the cathode
half-cell was completely closed but not airtight, the pH values were
significantly higher than those previously reported (Gajda et al.,
2014a). The cationic flux from the anolyte to the cathode has
been related to the catholyte pH increase. Rather than combating
this pH imbalance, it could be used as an advantage to produce an
alkaline solution similar to BES that consume electricity (Rabaey
et al., 2010). At present with results from the current study, this
may be achieved with the net energy generation, where pH split-
ting (Harnisch et al., 2008) does not affect the performance.

Active synthesis of hydrogen peroxide was previously shown in
MFC and it was dependent on the external resistor used (Fu et al.,
2010) however, in alkaline conditions, hydrogen peroxide un-
dergoes decomposition (Navarro et al., 1984; Venkatachalapathy
et al., 1999) resulting in the formation of OHe (Table 1). Alkaline
sorbents are used in chemical carbon capture through wet scrub-
bing (Zeman and Lackner, 2004) and applied at industrial scale in



Fig. 7. EDX analysis of crystallised salt and image from digital microscope (inset).
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wet scrubbing towers. The method involves the use of an alkaline
liquid sorbent such as NaOH and KOH to remove CO2 from ambient
air to produce carbonate salt. It has also been included as an
innovative concept idea of artificial trees (Lackner, 2009). MFCs that
can cogenerate electricity and active sorbent, are likely to lead to a
cost effective way of carbon capture and recycling of waste via
artificial photosynthesis (Gajda et al., 2014b). Previous MFC studies
that used sodium acetate as feedstock also showed the formation of
the precipitates such as sodium and calcium carbonates suggesting
that CO2 produced at the anode prevents pH increase of the MFCs
Fig. 8. XRD diffraction pattern comparison showing all 4 samples made up from very simil
with the reference pattern of trona Na3H(CO3)2.H2O and sodium carbonate monohydrate N
(Guerrini et al., 2013). The MFC-based extraction of sorbents from
wastewater shows to be particularly attractive. Here, it is suspected
that due to OH- formation as well as the cationic Naþ transport, the
sorbent is directly synthesised onto the cathode electrode. The
cathode shown here is serving as a sorbent-based air scrubber due
to the MFC energy generation.

Increase in catholyte conductivity with power performance in-
dicates that the quality of the catholyte is dependent on current and
does not affect the output (Fig. 6). At the same time, anodic con-
ductivity being significantly lower (16.23 mS/cm) suggests that the
extracted catholyte is concentrating transported ions. The formed
liquid washes the salt deposits off the electrode surface. These
catholyte properties can be extremely important in terms of
possible uses such as disinfectant, by utilizing the generated
hydrogen peroxide in situ as an effective way of treating biofouling
in cathodes (Babauta et al., 2013). Use of the cathodic chamber for
disinfection purposes in MFCs has been previously reported but
only with an external supply of disinfectant (Jadhav et al., 2014). In
addition, saline solutions in MFCs are advantageous since they
naturally decrease the internal resistance, thus resulting in higher
power densities without pH control, as previously reported (Ahn
and Logan, 2013).
3.4. Evaporate analysis

Each catholytewas left to evaporate in a controlled environment
over several days to obtain salt deposits. Initial EDX analysis in the
ar materials if not the same (inset). The experimental sample shows good comparison
a2CO3.H2O.
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detection of elements in the evaporite has shown a high atomic
content of sodium (excluding carbon). In addition, under a digital
microscope the sample clearly show crystalline structures (Fig. 7).

Further analysis through XRD powder diffraction of all four
samples showed that they are made of the same material (Fig. 8,
inset) and this suggests that it is a mixture of bicarbonates: trona
Na3H(CO3)2.H2O and carbonates: Na2CO3.H2O. Comparison of these
reference phases with the experimental diffraction pattern is
relatively good as shown in Fig. 8.

The evaporite composition suggests that CO2 is transformed in
situ into sodium carbonates and bicarbonates, which can be har-
vested (Vandehey and O'Neil, 2014). Salts were formed using CO2
derived from anodic wastewater degradation, and as an additional
CO2 capture from air leading towards a carbon negative cycle. In
this way, MFCs have the potential to become a technology suitable
for practical implementation as a carbon capture and energy
regeneration system from waste. It is important to explore further
the cathode capabilities depending on application (Harnisch and
Schr€oder, 2010) and use it as the platform for carbon scrubbing
(Gajda et al., 2014a,b) or ammonia stripping (Kuntke et al., 2012)
with simultaneous energy generation rather than energy
consumption.

4. Conclusions

MFCs were shown to produce useful catholyte whilst generating
electricity, with plain Pt-free electrodes, thereby representing a
promising route for sustainable electricity production and water
recycling. Catholyte pH (10.6e13.3 suggesting caustic content) and
conductivity, showed gradual increase with power. Cationic trans-
port might present a mechanism of water extraction from the
anolyte via electro-osmotic drag (under load) and osmotic pressure
(under open-circuit). The total charge transfer in the MFC is related
to the electro-osmotic drag of water through the membrane rep-
resenting the active transport, whereas osmotic pressure gradient
between dissimilar solutions is passive and dominant under open-
circuit conditions. Caustic catholyte has been collected and min-
eralised to carbonate/bicarbonate showing an active carbon
sequestration method through wet scrubbing with net energy-
positive MFC operation.
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