233 research outputs found

    Prespacer processing and specific integration in a Type I-A CRISPR system

    Get PDF
    This work was supported by a grant from the Biotechnology and Biological Sciences Research Council (REF: BB/M021017/1 to MFW).The CRISPR–Cas system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. Adaptation is dependent on the Cas1 and Cas2 proteins along with varying accessory proteins. Here we analyse the process in Sulfolobus solfataricus, showing that while Cas1 and Cas2 catalyze spacer integration in vitro, host factors are required for specificity. Specific integration also requires at least 400 bp of the leader sequence, and is dependent on the presence of hydrolysable ATP, suggestive of an active process that may involve DNA remodelling. Specific spacer integration is associated with processing of prespacer 3′ ends in a PAM-dependent manner. This is reflected in PAM-dependent processing of prespacer 3′ ends in vitro in the presence of cell lysate or the Cas4 nuclease, in a reaction consistent with PAM-directed binding and protection of prespacer DNA. These results highlight the diverse interplay between CRISPR–Cas elements and host proteins across CRISPR types.Publisher PDFPeer reviewe

    PIH64 Burden of 100 Diseases within General Practice: Results of the EPI3 Program

    Get PDF

    Which antidepressants have demonstrated superior efficacy? A review of the evidence

    No full text
    A review of published evidence of superior efficacy of a particular antidepressant in major depressive disorder may assist clinicians in making considered treatment choices. To identify such candidates, an international group of experts met to assess published evidence (identified through searches in Medline and Embase databases and discussions with experts in the field) from randomized, controlled trials and meta-analyses comparing two antidepressants under conditions of fair comparison. Criteria were defined to judge the strength of evidence. Two pivotal studies in moderate-to-severe major depressive disorder that demonstrate superiority on the primary efficacy measure, or alternatively one pivotal study supported by consistent results from meta-analyses, was considered to constitute evidence for definite superiority. Three antidepressants met these criteria: clomipramine, venlafaxine, and escitalopram. Three antidepressants were found to have probable superiority: milnacipran, duloxetine, and mirtazapine. Only escitalopram was found to have definite superiority in the treatment of severe depression; probable superiority was identified for venlafaxine and possible superiority for milnacipran and clomipramine. This review of published data found evidence that only a very few antidepressants are shown to be more effective than other

    Structure and mechanism of the CMR complex for CRISPR-Mediated antiviral immunity

    Get PDF
    The prokaryotic clusters of regularly interspaced palindromic repeats (CRISPR) system utilizes genomically encoded CRISPR RNA (crRNA), derived from invading viruses and incorporated into ribonucleoprotein complexes with CRISPR-associated (CAS) proteins, to target and degrade viral DNA or RNA on subsequent infection. RNA is targeted by the CMR complex. In Sulfolobus solfataricus, this complex is composed of seven CAS protein subunits (Cmr1-7) and carries a diverse "payload" of targeting crRNA. The crystal structure of Cmr7 and low-resolution structure of the complex are presented. S. solfataricus CMR cleaves RNA targets in an endo-nucleolytic reaction at UA dinucleotides. This activity is dependent on the 8 nt repeat-derived 5' sequence in the crRNA, but not on the presence of a proto-spacer-associated motif (PAM) in the target. Both target and guide RNAs can be cleaved, although a single molecule of guide RNA can support the degradation of multiple targets.Publisher PDFPeer reviewe

    Antiviral signaling by a cyclic nucleotide activated CRISPR protease

    Get PDF
    Funding information: M.G. and J.L.S.B. are funded by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy–EXC2151–390873048. M.F.W. acknowledges a European Research Council Advanced Grant (grant number 101018608) and the China Scholarship Council (REF: 202008420207 to H.C.). G.H. is grateful for funding by the Deutsche Forschungsgemeinschaft (grant number HA6805/6-1).CRISPR defense systems such as the well-known DNA-targeting Cas9 and the RNA-targeting type III systems are widespread in prokaryotes1,2. The latter can orchestrate a complex antiviral response that is initiated by the synthesis of cyclic oligoadenylates (cOAs) upon foreign RNA recognition3-5. Among a large set of proteins that were linked to type III systems and predicted to bind cOAs6,7, a CRISPR associated Lon protease (CalpL) stood out to us. The protein contains a sensor domain of the SAVED (SMODS-associated and fused to various effector domains) family7, fused to a Lon protease effector domain. However, the mode of action of this effector was unknown. Here, we report the structure and function of CalpL and show that the soluble protein forms a stable tripartite complex with two further proteins, CalpT and CalpS, that are encoded in the same operon. Upon activation by cA4, CalpL oligomerizes and specifically cleaves the MazF-homolog CalpT, releasing the extracytoplasmic function (ECF) sigma factor CalpS from the complex. This provides a direct connection between CRISPR-based foreign nucleic acid detection and transcriptional regulation. Furthermore, the presence of a cA4-binding SAVED domain in a CRISPR effector reveals an unexpected link to the cyclic oligonucleotide-based antiphage signaling system (CBASS).PostprintPeer reviewe

    Staphylococcus aureus DinG, a helicase that has evolved into a nuclease

    Get PDF
    DinG (damage inducible gene G) is a bacterial superfamily 2 helicase with 5′→3′ polarity. DinG is related to the XPD (xeroderma pigmentosum complementation group D) helicase family, and they have in common an FeS (iron–sulfur)-binding domain that is essential for the helicase activity. In the bacilli and clostridia, the DinG helicase has become fused with an N-terminal domain that is predicted to be an exonuclease. In the present paper we show that the DinG protein from Staphylococcus aureus lacks an FeS domain and is not a DNA helicase, although it retains DNA-dependent ATP hydrolysis activity. Instead, the enzyme is an active 3′→5′ exonuclease acting on single-stranded DNA and RNA substrates. The nuclease activity can be modulated by mutation of the ATP-binding cleft of the helicase domain, and is inhibited by ATP or ADP, suggesting a modified role for the inactive helicase domain in the control of the nuclease activity. By degrading rather than displacing RNA or DNA strands, the S. aureus DinG nuclease may accomplish the same function as the canonical DinG helicase
    corecore