781 research outputs found

    Comparative rainfall data analysis from two vertically pointing radars, an optical disdrometer, and a rain gauge

    Get PDF
    The authors present results of a comparative analysis of rainfall data from several ground-based instruments. The instruments include two vertically pointing Doppler radars, S-band and X-band, an optical disdrometer, and a tipping-bucket rain gauge. All instruments were collocated at the Iowa City Municipal Airport in Iowa City, Iowa, for a period of several months. The authors used the rainfall data derived from the four instruments to first study the temporal variability and scaling characteristics of rainfall and subsequently assess the instrumental effects on these derived properties. The results revealed obvious correspondence between the ground and remote sensors, which indicates the significance of the instrumental effect on the derived properties

    Review of the Phenomenology of Noncommutative Geometry

    Full text link
    We present a pedagogical review of particle physics models that are based on the noncommutativity of space-time, [x^μ,x^ν]=iθμν[\hat{x}_\mu,\hat{x}_\nu]=i \theta_{\mu \nu}, with specific attention to the phenomenology these models predict in particle experiments either in existence or under development. We summarize results obtained for high energy scattering such as would occur for example in a future e+e−e^+e^- linear collider with s=500GeV\sqrt{s} = 500 GeV, as well as low energy experiments such as those pertaining to elementary electric dipole moments and other \cpviolng observables, and finally comment on the status of phenomenological work in cosmology and extra dimensions.Comment: updated, references added, corrected typo

    Euclidean three-point function in loop and perturbative gravity

    Full text link
    We compute the leading order of the three-point function in loop quantum gravity, using the vertex expansion of the Euclidean version of the new spin foam dynamics, in the region of gamma<1. We find results consistent with Regge calculus in the limit gamma->0 and j->infinity. We also compute the tree-level three-point function of perturbative quantum general relativity in position space, and discuss the possibility of directly comparing the two results.Comment: 16 page

    Monoclonal antibodies against human astrocytomas and their reactivity pattern

    Get PDF
    The establishment of hybridomas after fusion of X63-Ag8.653 mouse myeloma cells and splenocytes from mice hyperimmunized against human astrocytomas is presented. The animals were primed with 5 × 106 chemically modified uncultured or cultured glioma cells. Six weeks after the last immunization step an intrasplenal booster injection was administrated and 3 days later the spleen cells were prepared for fusion experiments. According to the specificity analysis of the generated antibodies 7 hybridoma products (MUC 7-22, MUC 8-22, MUC 10-22, MUC 11-22, MUC 14-22, MUC 15-22 and MUC 2-63) react with gliomas, neuroblastomas and melanomas as well as with embryonic and fetal cells but do not recognize non-neurogenic tumors. The selected monoclonal antibodies (McAbs) of IgG1 and IgG2a isotypes are not extensively characterized but these antibodies have been demonstrated to be reactive with a panel of glioma cell lines with varying patterns of antigen distribution. Using the McAbs described above and a series of cryosections of glioma biopsies and paraffin sections of the same material as well as glioma cultures established from these, variable antigenic profiles among glioma cell populations could be demonstrated. From these results it is evident that there is not only a distinct degree of antigenic heterogeneity among and within brain tumors, but also that the pattern of antigenic expression can change continuously. Some of the glioma associated antigens recognized by the selected antibodies persist after fixation with methanol/acetone and Karnovsky's fixative and probably are oncoembryonic/oncofetal antigen(s). The data suggest that the use of McAbs recognizing tumor associated oncofetal antigens in immunohistochemistry facilitates objective typing of intracranial malignancies and precise analysis of fine needle brain/tumor biopsies in a sensitive and reproducible manner

    Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis.

    Get PDF
    BACKGROUND: The initiation of flowering is an important developmental transition as it marks the beginning of the reproductive phase in plants. The MADS-box transcription factors (TFs) FLOWERING LOCUS C (FLC) and SHORT VEGETATIVE PHASE (SVP) form a complex to repress the expression of genes that initiate flowering in Arabidopsis. Both TFs play a central role in the regulatory network by conferring seasonal patterns of flowering. However, their interdependence and biological relevance when acting as a complex have not been extensively studied. RESULTS: We characterized the effects of both TFs individually and as a complex on flowering initiation using transcriptome profiling and DNA-binding occupancy. We find four major clusters regulating transcriptional responses, and that DNA binding scenarios are highly affected by the presence of the cognate partner. Remarkably, we identify genes whose regulation depends exclusively on simultaneous action of both proteins, thus distinguishing between the specificity of the SVP:FLC complex and that of each TF acting individually. The downstream targets of the SVP:FLC complex include a higher proportion of genes regulating floral induction, whereas those bound by either TF independently are biased towards floral development. Many genes involved in gibberellin-related processes are bound by the SVP:FLC complex, suggesting that direct regulation of gibberellin metabolism by FLC and SVP contributes to their effects on flowering. CONCLUSIONS: The regulatory codes controlled by SVP and FLC were deciphered at the genome-wide level revealing substantial flexibility based on dependent and independent DNA binding that may contribute to variation and robustness in the regulation of flowering

    Comparison of two non-primitive methods for path integral simulations: Higher-order corrections vs. an effective propagator approach

    Full text link
    Two methods are compared that are used in path integral simulations. Both methods aim to achieve faster convergence to the quantum limit than the so-called primitive algorithm (PA). One method, originally proposed by Takahashi and Imada, is based on a higher-order approximation (HOA) of the quantum mechanical density operator. The other method is based upon an effective propagator (EPr). This propagator is constructed such that it produces correctly one and two-particle imaginary time correlation functions in the limit of small densities even for finite Trotter numbers P. We discuss the conceptual differences between both methods and compare the convergence rate of both approaches. While the HOA method converges faster than the EPr approach, EPr gives surprisingly good estimates of thermal quantities already for P = 1. Despite a significant improvement with respect to PA, neither HOA nor EPr overcomes the need to increase P linearly with inverse temperature. We also derive the proper estimator for radial distribution functions for HOA based path integral simulations.Comment: 17 pages, latex, 6 postscript figure
    • …
    corecore