45 research outputs found

    Characterization of microsatellite loci in Erysimum mediohispanicum (Brassicaceae) and cross-amplification in related species

    Get PDF
    • Premise of the study : We have developed and optimized microsatellite loci from a genomic library of Erysimum mediohispanicum. Microsatellites were also tested for cross-amplifi cation in 31 other Erysimum species. • Methods and Results : A total of 10 microsatellite loci were successfully amplifi ed. They were polymorphic for 81 E. mediohispanicum individuals from two locations in Sierra Nevada (southeastern Spain), which showed similar patterns of genetic diversity. On average, microsatellites had 8.6 alleles per locus and an expected heterozygosity of 0.69. Only one locus signifi cantly departed from Hardy – Weinberg equilibrium in both locations. Most of the markers successfully amplifi ed in other Erysimum species. • Conclusions : The genetic attributes of microsatellite loci will allow their application to population genetic studies in Erysimum , such as genetic differentiation and structure, gene fl ow, pollinator-mediated speciation, and hybridization studies.&nbsp

    Independent evolution of ancestral and novel defenses in a genus of toxic plants (Erysimum, Brassicaceae)

    Get PDF
    Phytochemical diversity is thought to result from coevolutionary cycles as specialization in herbivores imposes diversifying selection on plant chemical defenses. Plants in the speciose genus Erysimum (Brassicaceae) produce both ancestral glucosinolates and evolutionarily novel cardenolides as defenses. Here we test macroevolutionary hypotheses on co-expression, co-regulation, and diversification of these potentially redundant defenses across this genus. We sequenced and assembled the genome of E. cheiranthoides and foliar transcriptomes of 47 additional Erysimum species to construct a phylogeny from 9868 orthologous genes, revealing several geographic clades but also high levels of gene discordance. Concentrations, inducibility, and diversity of the two defenses varied independently among species, with no evidence for trade-offs. Closely related, geographically co-occurring species shared similar cardenolide traits, but not glucosinolate traits, likely as a result of specific selective pressures acting on each defense. Ancestral and novel chemical defenses in Erysimum thus appear to provide complementary rather than redundant functions.Austrian Science Fund (FWF) PZ00P3-161472National Science Foundation (NSF) 1811965 1645256Triad FoundationGerman Research Foundation (DFG) DFG-PE 2059/3-1Agencia Estatal de Investigacion CGL2017-86626-C2-2-PLOEWE Program Insect Biotechnology and BioresourcesJunta de Andalucía A-RNM505-UGR1

    Population Genetic Structure of the Grasshopper Eyprepocnemis plorans in the South and East of the Iberian Peninsula

    Get PDF
    The grasshopper Eyprepocnemis plorans subsp. plorans harbors a very widespread polymorphism for supernumerary (B) chromosomes which appear to have arisen recently. These chromosomes behave as genomic parasites because they are harmful for the individuals carrying them and show meiotic drive in the initial stages of population invasion. The rapid increase in B chromosome frequency at intrapopulation level is thus granted by meiotic drive, but its spread among populations most likely depends on interpopulation gene flow. We analyze here the population genetic structure in 10 natural populations from two regions (in the south and east) of the Iberian Peninsula. The southern populations were coastal whereas the eastern ones were inland populations located at 260–655 m altitude. The analysis of 97 ISSR markers revealed significant genetic differentiation among populations (average GST = 0.129), and the Structure software and AMOVA indicated a significant genetic differentiation between southern and eastern populations. There was also significant isolation by distance (IBD) between populations. Remarkably, these results were roughly similar to those found when only the markers showing low or no dropout were included, suggesting that allelic dropout had negligible effects on population genetic analysis. We conclude that high gene flow helped this parasitic B chromosome to spread through most of the geographical range of the subspecies E. plorans plorans.This study was supported by a grant from the Spanish Ministerio de Ciencia e Innovación (CGL2009-11917), and was partially performed by FEDER funds. MIMP was supported by a fellowship (FPU) from the Spanish Ministerio de Ciencia e Innovación

    Mapping Genetic Diversity of Cherimoya (Annona cherimola Mill.): Application of Spatial Analysis for Conservation and Use of Plant Genetic Resources

    Get PDF
    There is a growing call for inventories that evaluate geographic patterns in diversity of plant genetic resources maintained on farm and in species' natural populations in order to enhance their use and conservation. Such evaluations are relevant for useful tropical and subtropical tree species, as many of these species are still undomesticated, or in incipient stages of domestication and local populations can offer yet-unknown traits of high value to further domestication. For many outcrossing species, such as most trees, inbreeding depression can be an issue, and genetic diversity is important to sustain local production. Diversity is also crucial for species to adapt to environmental changes. This paper explores the possibilities of incorporating molecular marker data into Geographic Information Systems (GIS) to allow visualization and better understanding of spatial patterns of genetic diversity as a key input to optimize conservation and use of plant genetic resources, based on a case study of cherimoya (Annona cherimola Mill.), a Neotropical fruit tree species. We present spatial analyses to (1) improve the understanding of spatial distribution of genetic diversity of cherimoya natural stands and cultivated trees in Ecuador, Bolivia and Peru based on microsatellite molecular markers (SSRs); and (2) formulate optimal conservation strategies by revealing priority areas for in situ conservation, and identifying existing diversity gaps in ex situ collections. We found high levels of allelic richness, locally common alleles and expected heterozygosity in cherimoya's putative centre of origin, southern Ecuador and northern Peru, whereas levels of diversity in southern Peru and especially in Bolivia were significantly lower. The application of GIS on a large microsatellite dataset allows a more detailed prioritization of areas for in situ conservation and targeted collection across the Andean distribution range of cherimoya than previous studies could do, i.e. at province and department level in Ecuador and Peru, respectively

    Single origin of sex chromosomes and multiple origins of B chromosomes in fish genus Characidium

    Get PDF
    Chromosome painting with DNA probes obtained from supernumerary (B) and sex chromosomes in three species of fish genus Characidium (C. gomesi, C. pterostictum and C. oiticicai) showed a close resemblance in repetitive DNA content between B and sex chromosomes in C. gomesi and C. pterostictum. This suggests an intraspecific origin for B chromosomes in these two species, probably deriving from sex chromosomes. In C. oiticicai, however, a DNA probe obtained from its B chromosome hybridized with the B but not with the A chromosomes, suggesting that the B chromosome in this species could have arisen interspecifically, although this hypothesis needs further investigation. A molecular phylogenetic analysis performed on nine Characidium species, with two mtDNA genes, showed that the presence of heteromorphic sex chromosomes in these species is a derived condition, and that their origin could have been unique, a conclusion also supported by interspecific chromosome painting with a CgW probe derived from the W chromosome in C. gomesi. Summing up, our results indicate that whereas heteromorphic sex chromosomes in the genus Characidium appear to have had a common and unique origin, B chromosomes may have had independent origins in different species. Our results also show that molecular phylogenetic analysis is an excellent complement for cytogenetic studies by unveiling the direction of evolutionary chromosome changes.This research was funded by grants from the State of Sao Paulo Research Foundation (FAPESP) to EAS (2013/02143-3), grants from National Council for Research and Development (CNPq) to FF (480449/2012-0), and by Coordenacao de Aperfeicoamento de Pessoal de Nıvel Superior (CAPES)

    B-Chromosome Ribosomal DNA Is Functional in the Grasshopper Eyprepocnemis plorans

    Get PDF
    B-chromosomes are frequently argued to be genetically inert elements, but activity for some particular genes has been reported, especially for ribosomal RNA (rRNA) genes whose expression can easily be detected at the cytological level by the visualization of their phenotypic expression, i.e., the nucleolus. The B24 chromosome in the grasshopper Eyprepocnemis plorans frequently shows a nucleolus attached to it during meiotic prophase I. Here we show the presence of rRNA transcripts that unequivocally came from the B24 chromosome. To detect these transcripts, we designed primers specifically anchoring at the ITS-2 region, so that the reverse primer was complementary to the B chromosome DNA sequence including a differential adenine insertion being absent in the ITS2 of A chromosomes. PCR analysis carried out on genomic DNA showed amplification in B-carrying males but not in B-lacking ones. PCR analyses performed on complementary DNA showed amplification in about half of B-carrying males. Joint cytological and molecular analysis performed on 34 B-carrying males showed a close correspondence between the presence of B-specific transcripts and of nucleoli attached to the B chromosome. In addition, the molecular analysis revealed activity of the B chromosome rDNA in 10 out of the 13 B-carrying females analysed. Our results suggest that the nucleoli attached to B chromosomes are actively formed by expression of the rDNA carried by them, and not by recruitment of nucleolar materials formed in A chromosome nucleolar organizing regions. Therefore, B-chromosome rDNA in E. plorans is functional since it is actively transcribed to form the nucleolus attached to the B chromosome. This demonstrates that some heterochromatic B chromosomes can harbour functional genes.This study was supported by a grant from the Spanish Ministerio de Ciencia e Innovación (CGL2009-11917), and was partially performed by FEDER funds. M. Ruiz-Estévez was supported by a fellowship (FPU) from the Spanish Ministerio de Ciencia e Innovación

    Within-individual phenotypic plasticity in flowers fosters pollination niche shift

    Get PDF
    Authors thank Raquel Sánchez, Angel Caravante, Isabel Sánchez Almazo, Tatiana López Pérez, Samuel Cantarero, María José Jorquera and Germán Fernández for helping us during several phases of the study and Iván Rodríguez Arós for drawing the insect silhouettes. This research is supported by grants from the Spanish Ministry of Science, Innovation and Universities (CGL2015-71634-P, CGL2015-63827-P, CGL2017-86626-C2-1-P, CGL2017- 86626-C2-2-P, UNGR15-CE-3315, including EU FEDER funds), Junta de Andalucía (P18- FR-3641), Xunta de Galicia (CITACA), BBVA Foundation (PR17_ECO_0021), and a contract grant to C.A. from the former Spanish Ministry of Economy and Competitiveness (RYC-2012-12277). This is a contribution to the Research Unit Modeling Nature, funded by the Consejería de Economía, Conocimiento, Empresas y Universidad, and European Regional Development Fund (ERDF), reference SOMM17/6109/UGR.Phenotypic plasticity, the ability of a genotype of producing different phenotypes when exposed to different environments, may impact ecological interactions. We study here how within-individual plasticity in Moricandia arvensis flowers modifies its pollination niche. During spring, this plant produces large, cross-shaped, UV-reflecting lilac flowers attracting mostly long-tongued large bees. However, unlike most co-occurring species, M. arvensis keeps flowering during the hot, dry summer due to its plasticity in key vegetative traits. Changes in temperature and photoperiod in summer trigger changes in gene expression and the production of small, rounded, UV-absorbing white flowers that attract a different assemblage of generalist pollinators. This shift in pollination niche potentially allows successful reproduction in harsh conditions, facilitating M. arvensis to face anthropogenic perturbations and climate change. Floral phenotypes impact interactions between plants and pollinators. Here, the authors show that Moricandia arvensis displays discrete seasonal plasticity in floral phenotype, with large, lilac flowers attracting long-tongued bees in spring and small, rounded, white flowers attracting generalist pollinators in summer.Spanish Ministry of Science, Innovation and Universities (EU FEDER funds) CGL2015-71634-P CGL2015-63827-P CGL2017-86626-C2-1-P CGL2017-86626-C2-2-P UNGR15-CE-3315Junta de Andalucia P18-FR-3641Xunta de GaliciaBBVA Foundation PR17_ECO_0021Spanish Ministry of Economy and Competitiveness RYC-2012-12277Consejeria de Economia, Conocimiento, Empresas y Universidad SOMM17/6109/UGREuropean Union (EU) SOMM17/6109/UG

    Preferential Occupancy of R2 Retroelements on the B Chromosomes of the Grasshopper Eyprepocnemis plorans

    Get PDF
    R2 non-LTR retrotransposons exclusively insert into the 28S rRNA genes of their host, and are expressed by co-transcription with the rDNA unit. The grasshopper Eyprepocnemis plorans contains transcribed rDNA clusters on most of its A chromosomes, as well as non-transcribed rDNA clusters on the parasitic B chromosomes found in many populations. Here the structure of the E. plorans R2 element, its abundance relative to the number of rDNA units and its retrotransposition activity were determined. Animals screened from five populations contained on average over 12,000 rDNA units on their A chromosomes, but surprisingly only about 100 R2 elements. Monitoring the patterns of R2 insertions in individuals from these populations revealed only low levels of retrotransposition. The low rates of R2 insertion observed in E. plorans differ from the high levels of R2 insertion previously observed in insect species that have many fewer rDNA units. It is proposed that high levels of R2 are strongly selected against in E. plorans, because the rDNA transcription machinery in this species is unable to differentiate between R2-inserted and uninserted units. The B chromosomes of E. plorans contain an additional 7,000 to 15,000 rDNA units, but in contrast to the A chromosomes, from 150 to over 1,500 R2 elements. The higher concentration of R2 in the inactive B chromosomes rDNA clusters suggests these chromosomes can act as a sink for R2 insertions thus further reducing the level of insertions on the A chromosomes. These studies suggest an interesting evolutionary relationship between the parasitic B chromosomes and R2 elements.This study was supported by grants from the Spanish Ministerio de Ciencia y Tecnología (CGL2009-11917) and Plan Andaluz de Investigacion (CVI-6649), and was partially performed by FEDER funds and a grant from the National Institutes of Health (GM42790)

    Segregation distortion of isozyme loci in cherimoya (Annona cherimola Mill)

    No full text
    corecore