128 research outputs found

    Young and embedded clusters in Cygnus-X: evidence for building up the IMF?

    Full text link
    We provide a new view on the Cygnus-X north complex by accessing for the first time the low mass content of young stellar populations in the region. CFHT/WIRCam camera was used to perform a deep near-IR survey of this complex, sampling stellar masses down to ~0.1 M⊙_\odot. Several analysis tools, including a extinction treatment developed in this work, were employed to identify and uniformly characterise a dozen unstudied young star clusters in the area. Investigation of their mass distributions in low-mass domain revealed a relatively uniform log-normal IMF with a characteristic mass of 0.32±\pm0.08 M⊙_\odot and mass dispersion of 0.40±\pm0.06. In the high mass regime, their derived slopes showed that while the youngest clusters (age < 4 Myr) presented slightly shallower values with respect to the Salpeter's, our older clusters (4 Myr < age < 18 Myr) showed IMF compliant values and a slightly denser stellar population. Although possibly evidencing a deviation from an 'universal' IMF, these results also supports a scenario where these gas dominated young clusters gradually 'build up' their IMF by accreting low-mass stars formed in their vicinity during their first ~3 Myr, before the gas expulsion phase, emerging at the age of ~4 Myr with a fully fledged IMF. Finally, the derived distances to these clusters confirmed the existence of at least 3 different star forming regions throughout Cygnus-X north complex, at distances of 500-900 pc, 1.4-1.7 kpc and 3.0 kpc, and revealed evidence of a possible interaction between some of these stellar populations and the Cygnus-OB2 association.Comment: 20 pages, 19 figures. Contains an appendix with 10 extra figure

    A deep, wide-field search for substellar members in NGC 2264

    Full text link
    We report the first results of our ongoing campaign to discover the first brown dwarfs (BD) in NGC 2264, a young (3 Myr), populous star forming region for which our optical studies have revealed a very high density of potential candidates - 236 in << 1 deg2^2 - from the substellar limit down to at least ∼\sim 20 MJup_{\rm Jup} for zero reddening. Candidate BD were first selected using wide field (I,zI,z) band imaging with CFH12K, by reference to current theoretical isochrones. Subsequently, 79 (33%) of the I,zI,z sample were found to have near-infrared 2MASS photometry (JHKsJHK_s ±\pm 0.3 mag. or better), yielding dereddened magnitudes and allowing further investigation by comparison with the location of NextGen and DUSTY isochrones in colour-colour and colour-magnitude diagrams involving various combinations of II,JJ,HH and KsK_s. We discuss the status and potential substellarity of a number of relatively unreddened (Av_{\rm v} << 5) likely low-mass members in our sample, but in spite of the depth of our observations in I,zI,z, we are as yet unable to unambiguously identify substellar candidates using only 2MASS data. Nevertheless, there are excellent arguments for considering two faint (observed II ∼\sim 18.4 and 21.2) objects as cluster candidates with masses respectively at or rather below the hydrogen burning limit. More current candidates could be proven to be cluster members with masses around 0.1 M⊙_{\odot} {\it via} gravity-sensitive spectroscopy, and deeper near-infrared imaging will surely reveal a hitherto unknown population of young brown dwarfs in this region, accessible to the next generation of deep near-infrared surveys.Comment: 10 pages, 12 figures, accepted by A&

    A photometric and astrometric investigation of the brown dwarfs in Blanco 1

    Full text link
    We present the results of a photometric and astrometric study of the low mass stellar and substellar population of the young open cluster Blanco 1. We have exploited J band data, obtained recently with the Wide Field Camera (WFCAM) on the United Kingdom InfraRed Telescope (UKIRT), and 10 year old I and z band optical imaging from CFH12k and Canada France Hawaii Telescope (CFHT), to identify 44 candidate low mass stellar and substellar members, in an area of 2 sq. degrees, on the basis of their colours and proper motions. This sample includes five sources which are newly discovered. We also confirm the lowest mass candidate member of Blanco 1 unearthed so far (29MJup). We determine the cluster mass function to have a slope of alpha=+0.93, assuming it to have a power law form. This is high, but nearly consistent with previous studies of the cluster (to within the errors), and also that of its much better studied northern hemisphere analogue, the Pleiades.Comment: 8 Pages, 5 Figures, 2 Tables and 1 Appendix. Accepted for publication in MNRA

    The Origin and Universality of the Stellar Initial Mass Function

    Full text link
    We review current theories for the origin of the Stellar Initial Mass Function (IMF) with particular focus on the extent to which the IMF can be considered universal across various environments. To place the issue in an observational context, we summarize the techniques used to determine the IMF for different stellar populations, the uncertainties affecting the results, and the evidence for systematic departures from universality under extreme circumstances. We next consider theories for the formation of prestellar cores by turbulent fragmentation and the possible impact of various thermal, hydrodynamic and magneto-hydrodynamic instabilities. We address the conversion of prestellar cores into stars and evaluate the roles played by different processes: competitive accretion, dynamical fragmentation, ejection and starvation, filament fragmentation and filamentary accretion flows, disk formation and fragmentation, critical scales imposed by thermodynamics, and magnetic braking. We present explanations for the characteristic shapes of the Present-Day Prestellar Core Mass Function and the IMF and consider what significance can be attached to their apparent similarity. Substantial computational advances have occurred in recent years, and we review the numerical simulations that have been performed to predict the IMF directly and discuss the influence of dynamics, time-dependent phenomena, and initial conditions.Comment: 24 pages, 6 figures. Accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. S. Klessen, C. P. Dullemond, Th. Hennin

    The Monitor project: searching for occultations in young open clusters

    Get PDF
    The Monitor project is a photometric monitoring survey of nine young (1-200 Myr) clusters in the solar neighbourhood to search for eclipses by very low mass stars and brown dwarfs and for planetary transits in the light curves of cluster members. It began in the autumn of 2004 and uses several 2- to 4-m telescopes worldwide. We aim to calibrate the relation between age, mass, radius and where possible luminosity, from the K dwarf to the planet regime, in an age range where constraints on evolutionary models are currently very scarce. Any detection of an exoplanet in one of our youngest targets (≲10 Myr) would also provide important constraints on planet formation and migration time-scales and their relation to protoplanetary disc lifetimes. Finally, we will use the light curves of cluster members to study rotation and flaring in low-mass pre-main-sequence stars. The present paper details the motivation, science goals and observing strategy of the survey. We present a method to estimate the sensitivity and number of detections expected in each cluster, using a simple semi-analytic approach which takes into account the characteristics of the cluster and photometric observations, using (tunable) best-guess assumptions for the incidence and parameter distribution of putative companions, and we incorporate the limits imposed by radial velocity follow-up from medium and large telescopes. We use these calculations to show that the survey as a whole can be expected to detect over 100 young low and very low mass eclipsing binaries, and ∼3 transiting planets with radial velocity signatures detectable with currently available facilitie

    Proper motion L and T dwarf candidate members of the Pleiades

    Full text link
    We present the results of a deep optical-near-infrared multi-epoch survey covering 2.5 square degrees of the Pleiades open star cluster to search for new very-low-mass brown dwarf members. A significant (~ 5 year) epoch difference exists between the optical (CFH12k I-, Z-band) and near infrared (UKIRT WFCAM J-band) observations. We construct I,I-Z and Z,Z-J colour magnitude diagrams to select candidate cluster members. Proper motions are computed for all candidate members and compared to the background field objects to further refine the sample. We recover all known cluster members within the area of our survey. In addition, we have discovered 9 new candidate brown dwarf cluster members. The 7 faintest candidates have red Z-J colours and show blue near-infrared colours. These are consistent with being L and T-type Pleiads. Theoretical models predict their masses to be around 11 Jupiter masses. There is 1 errata for this paperComment: 12 pages, 9 figures, 4 tables, accepted for publication in MNRAS Errata: 1 tabl

    A graph theory-based multi-scale analysis of hierarchical cascade in molecular clouds : Application to the NGC 2264 region

    Full text link
    The spatial properties of small star-clusters suggest that they may originate from a fragmentation cascade of the cloud for which there might be traces up to a few dozen of kAU. Our goal is to investigate the multi-scale spatial structure of gas clumps, to probe the existence of a hierarchical cascade and to evaluate its possible link with star production in terms of multiplicity. From the Herschel emission maps of NGC 2264, clumps are extracted using getsf software at each of their associated spatial resolution, respectively [8.4, 13.5, 18.2, 24.9, 36.3]". Using the spatial distribution of these clumps and the class 0/I Young Stellar Object (YSO) from Spitzer data, we develop a graph-theoretic analysis to represent the multi-scale structure of the cloud as a connected network. From this network, we derive three classes of multi-scale structure in NGC 2264 depending on the number of nodes produced at the deepest level: hierarchical, linear and isolated. The structure class is strongly correlated with the column density NH2N_{\rm H_2} since the hierarchical ones dominate the regions whose NH2>6×1022_{\rm H_2} > 6 \times 10^{22}cm−2^{-2}. Although the latter are in minority, they contain half of the class 0/I YSOs proving that they are highly efficient in producing stars. We define a novel statistical metric, the fractality coefficient F that measure the fractal index describing the scale-free process of the cascade. For NGC 2264, we estimate F = 1.45±\pm0.12. However, a single fractal index fails to fully describe a scale-free process since the hierarchical cascade starts at a 13 kAU characteristic spatial scale. Our novel methodology allows us to correlate YSOs with their multi-scale gaseous environment. This hierarchical cascade that drives efficient star formation is suspected to be both hierarchical and rooted by the larger-scale gas environment up to 13 kAU

    A Hubble Space Telescope ACS Search for Brown Dwarf Binaries in the Pleiades Open Cluster

    Get PDF
    We present the results of a high-resolution imaging survey for brown dwarf binaries in the Pleiades open cluster. The observations were carried out with the Advance Camera for Surveys onboard the Hubble Space Telescope. Our sample consists of 15 bona-fide brown dwarfs. We confirm 2 binaries and detect their orbital motion, but we did not resolve any new binary candidates in the separation range between 5.4AU and 1700AU and masses in the range 0.035--0.065~Msun. Together with the results of our previous study (Martin et al., 2003), we can derive a visual binary frequency of 13.3−4.3+13.7^{+13.7}_{-4.3}\% for separations greater than 7~AU masses between 0.055--0.065~M_{\sun} and mass ratios between 0.45--0.9<q<<q<1.0. The other observed properties of Pleiades brown dwarf binaries (distributions of separation and mass ratio) appear to be similar to their older counterparts in the field.Comment: 29 pages, 7 figures, 6 tables, accepted for publication in Ap

    A wide deep infrared look at the Pleiades with UKIDSS: new constraints on the substellar binary fraction and the low mass IMF

    Get PDF
    We present the results of a deep wide-field near-infrared survey of 12 square degrees of the Pleiades conducted as part of the UKIDSS Deep Infrared Sky Survey (UKIDSS) Galactic Cluster Survey (GCS). We have extracted over 340 high probability proper motion members down to 0.03 solar masses using a combination of UKIDSS photometry and proper motion measurements obtained by cross-correlating the GCS with data from the Two Micron All Sky Survey (2MASS), the Isaac Newton (INT) and the Canada-France-Hawai'i (CFHT) telescopes. Additionally, we have unearthed 73 new candidate brown dwarf members on the basis of five band UKIDSS photometry alone. We have identified 23 substellar multiple system candidates out of 63 candidate brown dwarfs from the (Y-K,Y) and (J-K,J) colour-magnitude diagrams, yielding a binary frequency of 28-44% in the 0.075-0.030 Msun mass range. Our estimate is three times larger than the binary fractions reported from high-resolution imaging surveys of field ultracool dwarfs and Pleiades brown dwarfs. However, it is marginally consistent with our earlier ``peculiar'' photometric binary fraction of 50+/-10% presented in Pinfield et al. (2003), in good agreement with the 32-45% binary fraction derived from the recent Monte-Carlo simulations of Maxted & Jeffries (2005) and compatible with the 26+/-10% frequency recently estimated by Basri & Reiners (2006). A tentative estimate of the mass ratios from photometry alone seems to support the hypothesis that binary brown dwarfs tend to reside in near equal-mass ratio systems. (abridged)Comment: 21 pages, 8 figures, 6 tables, 1 electronic table, 6 appendices with tables, accepted to MNRA
    • …
    corecore