608 research outputs found

    On some entropy functionals derived from R\'enyi information divergence

    Get PDF
    We consider the maximum entropy problems associated with R\'enyi QQ-entropy, subject to two kinds of constraints on expected values. The constraints considered are a constraint on the standard expectation, and a constraint on the generalized expectation as encountered in nonextensive statistics. The optimum maximum entropy probability distributions, which can exhibit a power-law behaviour, are derived and characterized. The R\'enyi entropy of the optimum distributions can be viewed as a function of the constraint. This defines two families of entropy functionals in the space of possible expected values. General properties of these functionals, including nonnegativity, minimum, convexity, are documented. Their relationships as well as numerical aspects are also discussed. Finally, we work out some specific cases for the reference measure Q(x)Q(x) and recover in a limit case some well-known entropies

    Basal forebrain cholinergic system volume is associated with general cognitive ability in the elderly

    Get PDF
    OBJECTIVE: At the present, it is unclear whether association of basal forebrain cholinergic system (BFCS) volume with cognitive performance exists in healthy as well as in cognitively impaired elderly subjects. Whereas one small study reported an association of BFCS volume with general cognitive ability 'g' in healthy ageing, effects on specific cognitive domains have only been found in subjects with cognitive decline. Here we aim to clarify whether an association of BFCS volume and 'g' is present in a larger sample of elderly subjects without obvious symptoms of dementia and whether similar associations can also be observed in specific cognitive domains. METHODS: 282 pre-surgical patients from the BioCog study (aged 72.7±4.9 years with a range of 65-87 years, 110 women) with a median MMSE score of 29 points (range 24-30) were investigated. BFCS and brain volume as well as brain parenchymal fraction were assessed in T1-weighted MR images using SPM12 and a probabilistic map of the BFCS. Neuropsychological assessment comprised the CANTAB cognitive battery and paper-and-pencil based tests. For data analysis, generalised linear models and quantile regression were applied. RESULTS: Significant associations of BFCS volume with 'g' and several cognitive domains were found, with the strongest association found for 'g'. BFCS volume explained less variance in cognitive performance than brain volume. The association was not confounded by brain parenchymal fraction. Furthermore, the association of BFCS volume and 'g' was similar in high- and low-performers. CONCLUSION: Our results extend previous study findings on BFCS volume associations with cognition in elderly subjects. Despite the observed associations of BFCS volume and cognitive performance, this association seems to reflect a more general association of brain volume and cognition. Accordingly, a specific association of BFCS volume and cognition in non-demented elderly subjects is questionable

    The puzzling issue of silica toxicity: are silanols bridging the gaps between surface states and pathogenicity?

    Get PDF
    Background: Silica continues to represent an intriguing topic of fundamental and applied research across various scientific fields, from geology to physics, chemistry, cell biology, and particle toxicology. The pathogenic activity of silica is variable, depending on the physico-chemical features of the particles. In the last 50 years, crystallinity and capacity to generate free radicals have been recognized as relevant features for silica toxicity. The ‘surface’ also plays an important role in silica toxicity, but this term has often been used in a very general way, without defining which properties of the surface are actually driving toxicity. How the chemical features (e.g., silanols and siloxanes) and configuration of the silica surface can trigger toxic responses remains incompletely understood. Main body: Recent developments in surface chemistry, cell biology and toxicology provide new avenues to improve our understanding of the molecular mechanisms of the adverse responses to silica particles. New physicochemical methods can finely characterize and quantify silanols at the surface of silica particles. Advanced computational modelling and atomic force microscopy offer unique opportunities to explore the intimate interactions between silica surface and membrane models or cells. In recent years, interdisciplinary research, using these tools, has built increasing evidence that surface silanols are critical determinants of the interaction between silica particles and biomolecules, membranes, cell systems, or animal models. It also has become clear that silanol configuration, and eventually biological responses, can be affected by impurities within the crystal structure, or coatings covering the particle surface. The discovery of new molecular targets of crystalline as well as amorphous silica particles in the immune system and in epithelial lung cells represents new possible toxicity pathways. Cellular recognition systems that detect specific features of the surface of silica particles have been identified. Conclusions: Interdisciplinary research bridging surface chemistry to toxicology is progressively solving the puzzling issue of the variable toxicity of silica. Further interdisciplinary research is ongoing to elucidate the intimate mechanisms of silica pathogenicity, to possibly mitigate or reduce surface reactivity. Keywords: Silica, Silicosis, Lung cancer, Auto-immune diseases, Surface reactivity, Silanol, Coating, Modelling, Spectroscopy, Atomic force microscop

    The puzzling issue of silica toxicity: Are silanols bridging the gaps between surface states and pathogenicity?

    Get PDF
    Background: Silica continues to represent an intriguing topic of fundamental and applied research across various scientific fields, from geology to physics, chemistry, cell biology, and particle toxicology. The pathogenic activity of silica is variable, depending on the physico-chemical features of the particles. In the last 50 years, crystallinity and capacity to generate free radicals have been recognized as relevant features for silica toxicity. The 'surface' also plays an important role in silica toxicity, but this term has often been used in a very general way, without defining which properties of the surface are actually driving toxicity. How the chemical features (e.g., silanols and siloxanes) and configuration of the silica surface can trigger toxic responses remains incompletely understood. Main body: Recent developments in surface chemistry, cell biology and toxicology provide new avenues to improve our understanding of the molecular mechanisms of the adverse responses to silica particles. New physico-chemical methods can finely characterize and quantify silanols at the surface of silica particles. Advanced computational modelling and atomic force microscopy offer unique opportunities to explore the intimate interactions between silica surface and membrane models or cells. In recent years, interdisciplinary research, using these tools, has built increasing evidence that surface silanols are critical determinants of the interaction between silica particles and biomolecules, membranes, cell systems, or animal models. It also has become clear that silanol configuration, and eventually biological responses, can be affected by impurities within the crystal structure, or coatings covering the particle surface. The discovery of new molecular targets of crystalline as well as amorphous silica particles in the immune system and in epithelial lung cells represents new possible toxicity pathways. Cellular recognition systems that detect specific features of the surface of silica particles have been identified. Conclusions: Interdisciplinary research bridging surface chemistry to toxicology is progressively solving the puzzling issue of the variable toxicity of silica. Further interdisciplinary research is ongoing to elucidate the intimate mechanisms of silica pathogenicity, to possibly mitigate or reduce surface reactivity

    Stability of neuropsychological test performance in older adults serving as normative controls for a study on postoperative cognitive dysfunction

    Get PDF
    OBJECTIVE: Studies of postoperative cognitive dysfunction (POCD) rely on repeat neuropsychological testing. The stability of the applied instruments, which are affected by natural variability in performance and measurement imprecision, is often unclear. We determined the stability of a neuropsychological test battery using a sample of older adults from the general population. Forty-five participants aged 65 to 89 years performed six computerized and non-computerized neuropsychological tests at baseline and again at 7 day and 3 months follow-up sessions. Mean scores on each test were compared across time points using repeated measures analyses of variance (ANOVA) with pairwise comparison. Two-way mixed effects, absolute agreement analyses of variance intra-class correlation coefficients (ICC) determined test-retest reliability. RESULTS: All tests had moderate to excellent test-retest reliability during 7-day (ICC range 0.63 to 0.94; all p < 0.01) and 3-month intervals (ICC range 0.60 to 0.92; all p < 0.01) though confidence intervals of ICC estimates were large throughout. Practice effects apparent at 7 days eased off by 3 months. No substantial differences between computerized and non-computerized tests were observed. We conclude that the present six-test neuropsychological test battery is appropriate for use in POCD research though small sample size of our study needs to be recognized as a limitation. Trial registration ClinicalTrials.gov Identifier NCT02265263 (15th October 2014)

    Contribution of IQ in young adulthood to the associations of education and occupation with cognitive ability in older age

    Get PDF
    BACKGROUND: Studies suggest that a higher education and occupation are each associated with a higher late-life cognitive ability, but their inter-relationships in their association with cognitive ability and the contribution of peak IQ in young adulthood ('pre-morbid IQ') often remain unclear. METHODS: Cross-sectional analysis of 623 participants aged ≥65 years of the BioCog study. Education was coded according to the International Standard Classification of Education (ISCED; range 1 to 6). Occupation was coded as 'semi/unskilled', 'skilled manual', 'skilled non-manual', 'managerial', 'professional'. A summary score of global ability (‘g’) was constructed from six cognitive tests. Pre-morbid IQ was estimated from vocabulary. The Geriatric Depression Scale assessed symptoms of depression. Age- and sex-adjusted analyses of covariance were performed. RESULTS: Education (partial eta2 0.076; p < 0.001) and occupation (partial eta2 = 0.037; p < 0.001) were each significantly associated with g. For education, the association was attenuated but remained statistically significant when pre-morbid IQ was controlled for (partial eta2 0.036; p < 0.001) and was unchanged with additional adjustment for depression (partial eta2 0.037; p < 0.001). For occupation, the association with g was no longer significant when pre-morbid IQ (partial eta2 = 0.015; p = 0.06) and depression (partial eta2 = 0.011; p = 0.18) were entered as covariates in separate steps. When education and occupation were entered concurrently into the fully adjusted model, only education was independently associated with g (partial eta2 0.030; p < 0.001; occupation, p = 0.93). CONCLUSION: While a higher education and a higher occupation were each associated with a higher late-life cognitive ability, only for education some unique contribution to cognitive ability remained over and above its relationship with pre-morbid IQ, depression, and occupation. Further research is needed to address whether a longer time spent in education may promote late-life cognitive ability

    Mechanisms of Transcranial Doppler Ultrasound phenotypes in paediatric cerebral malaria remain elusive.

    Get PDF
    BACKGROUND: Cerebral malaria (CM) results in significant paediatric death and neurodisability in sub-Saharan Africa. Several different alterations to typical Transcranial Doppler Ultrasound (TCD) flow velocities and waveforms in CM have been described, but mechanistic contributors to these abnormalities are unknown. If identified, targeted, TCD-guided adjunctive therapy in CM may improve outcomes. METHODS: This was a prospective, observational study of children 6 months to 12 years with CM in Blantyre, Malawi recruited between January 2018 and June 2021. Medical history, physical examination, laboratory analysis, electroencephalogram, and magnetic resonance imaging were undertaken on presentation. Admission TCD results determined phenotypic grouping following a priori definitions. Evaluation of the relationship between haemodynamic, metabolic, or intracranial perturbations that lead to these observed phenotypes in other diseases was undertaken. Neurological outcomes at hospital discharge were evaluated using the Paediatric Cerebral Performance Categorization (PCPC) score. RESULTS: One hundred seventy-four patients were enrolled. Seven (4%) had a normal TCD examination, 57 (33%) met criteria for hyperaemia, 50 (29%) for low flow, 14 (8%) for microvascular obstruction, 11 (6%) for vasospasm, and 35 (20%) for isolated posterior circulation high flow. A lower cardiac index (CI) and higher systemic vascular resistive index (SVRI) were present in those with low flow than other groups (p \u3c 0.003), though these values are normal for age (CI 4.4 [3.7,5] l/min/m2, SVRI 1552 [1197,1961] dscm-5m2). Other parameters were largely not significantly different between phenotypes. Overall, 118 children (68%) had a good neurological outcome. Twenty-three (13%) died, and 33 (19%) had neurological deficits. Outcomes were best for participants with hyperaemia and isolated posterior high flow (PCPC 1-2 in 77 and 89% respectively). Participants with low flow had the least likelihood of a good outcome (PCPC 1-2 in 42%) (p \u3c 0.001). Cerebral autoregulation was significantly better in children with good outcome (transient hyperemic response ratio (THRR) 1.12 [1.04,1.2]) compared to a poor outcome (THRR 1.05 [0.98,1.02], p = 0.05). CONCLUSIONS: Common pathophysiological mechanisms leading to TCD phenotypes in non-malarial illness are not causative in children with CM. Alternative mechanistic contributors, including mechanical factors of the cerebrovasculature and biologically active regulators of vascular tone should be explored

    The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory

    Get PDF
    The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submillimetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16x25 pixels, each, and two filled silicon bolometer arrays with 16x32 and 32x64 pixels, respectively, to perform integral-field spectroscopy and imaging photometry in the 60-210\mu\ m wavelength regime. In photometry mode, it simultaneously images two bands, 60-85\mu\ m or 85-125\mu\m and 125-210\mu\ m, over a field of view of ~1.75'x3.5', with close to Nyquist beam sampling in each band. In spectroscopy mode, it images a field of 47"x47", resolved into 5x5 pixels, with an instantaneous spectral coverage of ~1500km/s and a spectral resolution of ~175km/s. We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the Performance Verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions
    • …
    corecore