41 research outputs found
Recommended from our members
Species richness declines and biotic homogenization have slowed down for NW-European pollinators and plants
Concern about biodiversity loss has led to increased public investment in conservation. Whereas there is a
widespread perception that such initiatives have been unsuccessful, there are few quantitative tests of this
perception. Here, we evaluate whether rates of biodiversity change have altered in recent decades in three
European countries (Great Britain, Netherlands and Belgium) for plants and flower visiting insects. We
compared four 20-year periods, comparing periods of rapid land-use intensification and natural habitat loss
(1930–1990) with a period of increased conservation investment (post-1990). We found that extensive species
richness loss and biotic homogenisation occurred before 1990, whereas these negative trends became
substantially less accentuated during recent decades, being partially reversed for certain taxa (e.g. bees in
Great Britain and Netherlands). These results highlight the potential to maintain or even restore current
species assemblages (which despite past extinctions are still of great conservation value), at least in regions
where large-scale land-use intensification and natural habitat loss has ceased
The distribution of pond snail communities across a landscape: separating out the influence of spatial position from local habitat quality for ponds in south-east Northumberland, UK
Ponds support a rich biodiversity because the heterogeneity of individual ponds creates, at the landscape scale, a diversity of habitats for wildlife. The distribution of pond animals and plants will be influenced by both the local conditions within a pond and the spatial distribution of ponds across the landscape. Separating out the local from the spatial is difficult because the two are often linked. Pond snails are likely to be affected by both local conditions, e.g. water hardness, and spatial patterns, e.g. distance between ponds, but studies of snail communities struggle distinguishing between the two. In this study, communities of snails were recorded from 52 ponds in a biogeographically coherent landscape in north-east England. The distribution of snail communities was compared to local environments characterised by the macrophyte communities within each pond and to the spatial pattern of ponds throughout the landscape. Mantel tests were used to partial out the local versus the landscape respective influences. Snail communities became more similar in ponds that were closer together and in ponds with similar macrophyte communities as both the local and the landscape scale were important for this group of animals. Data were collected from several types of ponds, including those created on nature reserves specifically for wildlife, old field ponds (at least 150 years old) primarily created for watering livestock and subsidence ponds outside protected areas or amongst coastal dunes. No one pond type supported all the species. Larger, deeper ponds on nature reserves had the highest numbers of species within individual ponds but shallow, temporary sites on farm land supported a distinct temporary water fauna. The conservation of pond snails in this region requires a diversity of pond types rather than one idealised type and ponds scattered throughout the area at a variety of sites, not just concentrated on nature reserves
The impacts of environmental warming on Odonata: a review
Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns
Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads
The interlocking leaves of tank-forming bromeliads (Bromeliaceae) collect rainwater and detritus, thus creating a freshwater habitat for specialized organisms. Their abundance and the possibility of quantifying communities with accuracy give us unparalleled insight into how changes in local to regional environments influence community diversity in small water bodies. We sampled 365 bromeliads (365 invertebrate communities) along a southeastern to northwestern range in French Guiana. Geographic locality determined the species pool for bromeliad invertebrates, and local environments determined the abundance patterns through the selection of traits that are best adapted to the bromeliad habitats. Patterns in community structure mostly emerged from patterns of predator species occurrence and abundance across local-regional environments, while the set of detritivores remained constant. Water volume had a strong positive correlation with invertebrate diversity, making it a biologically relevant measure of the pools' carrying capacity. The significant effects of incoming detritus and incident light show that changes in local environments (e.g., the conversion of forest to cropping systems) strongly influence freshwater communities. Because changes in local environments do not affect detritivores and predators equally, one may expect functional shifts as sets of invertebrates with particular traits are replaced or complemented by other sets with different traits
Biological traits of European pond macroinvertebrates
Whilst biological traits of river macroinvertebrates show unimodal responses to geographic changes in habitat conditions in Europe, we still do not know whether spatial turnover of species result in distinct combinations of biological traits for pond macroinvertebrates. Here, we used data on the occurrence of 204 macroinvertebrate taxa in 120 ponds from four biogeographic regions of Europe, to compare their biological traits. The Mediterranean, Atlantic, Alpine, and Continental regions have specific climate, vegetation and geology. Only two taxa were exclusively found in the Alpine and Continental regions, while 28 and 34 taxa were exclusively recorded in the Atlantic and Mediterranean regions, respectively. Invertebrates in the Mediterranean region allocated much energy to reproduction and resistance forms. Most Mediterranean invertebrate species had narrow thermal ranges. In Continental areas, invertebrates allocated lesser energy to reproduction and dispersal, and organisms were short lived with high diversity of feeding groups. These characteristics suggest higher resilience. The main difference between ponds in the Alpine and Atlantic regions was their elevation. Alpine conditions necessitate specific adaptations related to rapid temperature fluctuations, and low nutrient concentrations. Even if our samples did not cover the full range of pond conditions across Europe, our analyses suggest that changes in community composition have important impacts on pond ecosystem functions. Consistent information on a larger set of ponds across Europe would be much needed, but their low accessibility (unpublished data and/or not disclosed by authors) remains problematic. There is still, therefore, a pressing need for the incorporation of high quality data sets into a standardized database so that they can be further analyzed in an integrated European-wide manner
Aquatic Macroinvertebrate Biodiversity Associated with Artificial Agricultural Drainage Ditches
Agricultural drainage channels and ditches are ubiquitous features in the lowland agricultural landscapes, built primarily to facilitate land drainage, irrigate agricultural crops and alleviate flood risk. Most drainage ditches are considered artificial waterbodies and are not typically included in routine monitoring programmes, and as a result the faunal and floral communities they support are poorly quantified. This paper characterizes the aquatic macroinvertebrate diversity (alpha, beta and gamma) of agricultural drainage ditches managed by an internal drainage board in Lincolnshire, UK. The drainage ditches support very diverse macroinvertebrate communities at both the site (alpha diversity) and landscape scale (gamma diversity) with the main arterial drainage ditches supporting greater numbers of taxa when compared to smaller ditches. Examination of the between site community heterogeneity (beta diversity) indicated that differences among ditches were high spatially and temporally. The results illustrate that both main arterial and side ditches make a unique contribution to aquatic biodiversity of the agricultural landscape. Given the need to maintain drainage ditches to support agriculture and flood defence measures, we advocate the application of principles from ‘reconciliation ecology’ to inform the future management and conservation of drainage ditches
When is the Best Time to Sample Aquatic Macroinvertebrates in Ponds for Biodiversity Assessment?
Ponds are sites of high biodiversity and conservation value, yet there is little or no statutory monitoring of them across most of Europe. There are clear and standardized protocols for sampling aquatic macroinvertebrate communities in ponds but the most suitable time(s) to undertake the survey(s) remains poorly specified. This paper examined the aquatic macroinvertebrate communities from 95 ponds within different landuse types over three seasons (spring, summer and autumn) to determine the most appropriate time to undertake sampling to characterise biodiversity. The combined samples from all three seasons provided the most comprehensive record of the aquatic macroinvertebrate taxa recorded within ponds (alpha and gamma diversity). Samples collected during the autumn survey yielded significantly greater macroinvertebrate richness (76% of the total diversity) than either spring or summer surveys. Macroinvertebrate diversity was greatest during autumn in meadow and agricultural ponds but taxon richness among forest and urban ponds did not differ significantly temporally. The autumn survey provided the highest measures of richness for Coleoptera, Hemiptera and Odonata. However, richness of the aquatic insect order Trichoptera was highest in spring and lowest in autumn. The results illustrate that multiple surveys, covering more than one season, provide the most comprehensive representation of macroinvertebrate biodiversity. When sampling can only be undertaken on one occasion, the most appropriate time to undertake surveys to characterise the macroinvertebrate community biodiversity is during the autumn; although this may need to be modified if other floral and faunal groups need to be incorporated in to the sampling programme
Green Crab (Carcinus maenas) Foraging Efficiency Reduced by Fast Flows
Predators can strongly influence prey populations and the structure and function of ecosystems, but these effects can be modified by environmental stress. For example, fluid velocity and turbulence can alter the impact of predators by limiting their environmental range and altering their foraging ability. We investigated how hydrodynamics affected the foraging behavior of the green crab (Carcinus maenas), which is invading marine habitats throughout the world. High flow velocities are known to reduce green crab predation rates and our study sought to identify the mechanisms by which flow affects green crabs. We performed a series of experiments with green crabs to determine: 1) if their ability to find prey was altered by flow in the field, 2) how flow velocity influenced their foraging efficiency, and 3) how flow velocity affected their handling time of prey. In a field study, we caught significantly fewer crabs in baited traps at sites with fast versus slow flows even though crabs were more abundant in high flow areas. This finding suggests that higher velocity flows impair the ability of green crabs to locate prey. In laboratory flume assays, green crabs foraged less efficiently when flow velocity was increased. Moreover, green crabs required significantly more time to consume prey in high velocity flows. Our data indicate that flow can impose significant chemosensory and physical constraints on green crabs. Hence, hydrodynamics may strongly influence the role that green crabs and other predators play in rocky intertidal communities