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Abstract 21 

Ponds are sites of high biodiversity and conservation value, yet there is little or no statutory 22 

monitoring of them across most of Europe. There are clear and standardized protocols for sampling 23 

aquatic macroinvertebrate communities in ponds but the most suitable time(s) to undertake the 24 

survey(s) remains poorly specified. This paper examined the aquatic macroinvertebrate communities 25 

from 95 ponds within different landuse types over three seasons (spring, summer and autumn) to 26 

determine the most appropriate time to undertake sampling to characterise biodiversity. The combined 27 

samples from all three seasons provided the most comprehensive record of the aquatic 28 

macroinvertebrate taxa recorded within ponds (alpha and gamma diversity). Samples collected during 29 

the autumn survey yielded significantly greater macroinvertebrate richness (76% of the total diversity) 30 

than either spring or summer surveys. Macroinvertebrate diversity was greatest during autumn in 31 

meadow and agricultural ponds but taxon richness among forest and urban ponds did not differ 32 

significantly temporally. The autumn survey provided the highest measures of richness for 33 

Coleoptera, Hemiptera and Odonata. However, richness of the aquatic insect order Trichoptera was 34 

highest in spring and lowest in autumn. The results illustrate that multiple surveys, covering more 35 

than one season, provide the most comprehensive representation of macroinvertebrate biodiversity. 36 

When sampling can only be undertaken on one occasion, the most appropriate time to undertake 37 

surveys to characterise the macroinvertebrate community biodiversity is during the autumn; although 38 

this may need to be modified if other floral and faunal groups need to be incorporated in to the 39 

sampling programme.  40 

 41 
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 47 

Introduction 48 

It is only relatively recently that ponds have been widely recognized as important freshwater habitats 49 

supporting aquatic biodiversity in Europe (Davies et al. 2008; Picazo et al. 2012; Hassall 2015). In 50 

particular, ponds have often been shown to support higher numbers of rare and uncommon taxa than 51 

other freshwater habitats such as rivers and lakes (Williams et al. 2003; Biggs et al. 2005; Lukacs et 52 

al. 2013). The number of peer-reviewed, scientific publications examining pond biodiversity has 53 

tripled in the last decade (Cereghino et al. 2014) and a few key conservation project initiatives have 54 

elevated pond habitats and the organisms they support up the conservation agenda (e.g., Freshwater 55 

Habitats Trust 2015b; 2015c DCPWA 2015). Nonetheless, while legislation has necessitated the 56 

monitoring of larger freshwater bodies (rivers and lakes) at the European and national level, following 57 

the adoption of the EU Water Framework Directive into law (EC 2000; Oertli et al. 2005; Birk et al. 58 

2012), routine monitoring of small waterbodies such as ponds is rarely undertaken. As a result, 59 

research focused on the repeated monitoring of ponds and how best to achieve this is limited.  60 

Ponds support a wide range of flora and fauna with highly variable life histories and habitat 61 

preferences that need to be considered when designing sampling programs. If the primary focus of the 62 

pond survey is to sample aquatic macroinvertebrates, there are clear standardized protocols for 63 

sampling (e.g., the National Pond Survey; Biggs et al. 1998, Predictive SYstem for Multimetrics - 64 

PSYM; Environment Agency and Pond Conservation Trust 2002; Chadd 2010). For 65 

macroinvertebrates, these almost exclusively involve the use of a ‘pond net’ and the application of a 66 

sweep sampling technique for a fixed / standardized time-period (Oertli et al. 2005; Hassall and 67 

Anderson 2015) with sampling effort divided between different habitat units (Gioria et al. 2010; 68 

Becerra-Jurado et al. 2012). However, there are a number of specific variations and modifications to 69 

the protocol that can be used when sampling particular macroinvertebrate groups, such as Odonata 70 

(Oertli et al. 2005; Ruggiero et al. 2008; Raebel et al. 2011) and Chironomidae (Rufer and Ferrington 71 

2008; Michelutti et al. 2011; Ruse 2013). Other protocols have been designed to cover multiple 72 

groups, for example the European Plans d’eau Suisses (PLOCH) sampling methodology focusses on 5 73 
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target groups: aquatic macrophytes, Coleoptera, Odonata, Gastropoda and Amphibia. This 74 

methodology combines a fixed three minute methodology for aquatic Coleoptera and Gastropoda with 75 

alternative sampling strategies for macrophytes, Amphibia and larval Odonata, to provide a rapid 76 

assessment of pond taxonomic richness (Oertli et al. 2005).  77 

When attempting to characterise macroinvertebrate diversity, despite some standardized approaches to 78 

pond sample collection (PSYM and PLOCH methodologies), there is considerable variability in the 79 

timing of sampling across Europe. In general, academic studies reporting pond biodiversity have 80 

collected samples over a single sampling season, most frequently summer (e.g. Jeffries 1991; Biggs et 81 

al. 2007; Colding et al. 2009; Le Viol et al. 2009; Gioria et al. 2010; Sayer et al. 2012; Usio et al. 82 

2013; Briers 2014; Noble and Hassall 2014). Indeed, the two principal methodologies for quantifying 83 

the ecological quality of ponds in the UK (PSYM), and Europe, (PLOCH), both advocate summer 84 

sampling (Environment Agency and Pond Conservation Trust 2002; Oertli et al. 2005). A number of 85 

published studies, on the other hand, have conducted sampling during either the spring or autumn 86 

seasons (spring - Collinson et al. 1995; Bazzanti et al. 2010; Fuentes-Rodriguez et al. 2013; Hassall 87 

and Anderson 2015; autumn - Bronmark 1985) or across two seasons (e.g., Wood et al. 2001; Della 88 

Bella et al. 2005; Declerck et al. 2006; Cereghino et al. 2008; Ruggiero et al. 2008; Becerra Jurado et 89 

al. 2010; Nakanishi et al. 2014). Indeed, the UK national pond survey advocates that sampling should 90 

be undertaken over three seasons to obtain an accurate representation of total diversity (Biggs et al. 91 

1998; Chadd 2010), and this has been implemented in some studies (e.g., Hill et al. 2015), whilst a 92 

small number of studies have even sampled aquatic macroinvertebrates on a monthly basis for a single 93 

year (e.g., Chaichana et al. 2011; Armitage et al. 2012); or in the case of ephemeral ponds to reflect 94 

the presence of water within the pond basin (Bilton et al. 2009; Florencio et al. 2009).  95 

Given the variability in the season that pond macroinvertebrate surveys are undertaken, and to inform 96 

future studies of biodiversity assessment, the current study sought to: (i) characterize the alpha and 97 

gamma diversity of aquatic macroinvertebrate communities for 95 ponds over three seasons (spring, 98 

summer and autumn) and (ii) examine the macroinvertebrate community heterogeneity (beta-99 

diversity) among spring, summer and autumn seasons. Using data from 95 ponds, we examined how 100 
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the timing of sample collection influenced measures of species diversity across an array of 101 

invertebrate groups and to determine whether a single sampling period may be considered appropriate 102 

for assessments of biodiversity. 103 

 104 

Materials and Methods 105 

Study Sites 106 

A total of 95 ponds within the catchment of the River Soar, close to the town of Loughborough, 107 

(Leicestershire, UK) were sampled (68 perennial and 27 ephemeral ponds). The ponds were located in 108 

four land-use types typical of a European lowland landscape; floodplain meadow (35 ponds), arable 109 

agricultural (12 ponds), deciduous forest (7 ponds) and urban environment (41 ponds). The latter 110 

group included ponds within domestic gardens, urban green spaces (such as parks) and in highly 111 

developed areas (industrial, roadside and city centre) such as storm water retention ponds.  112 

Aquatic macroinvertebrate sampling 113 

Aquatic macroinvertebrate samples were collected on three occasions from each pond corresponding 114 

to spring (March), summer (June) and autumn (September) seasons. Not all ponds were wet on each 115 

sampling date: therefore a total of 256 macroinvertebrate samples were collected (spring n=84, 116 

summer n=93 and autumn n=79). In this study, a fixed time macroinvertebrate sampling strategy 117 

(Biggs et al. 1998) was not deemed suitable for macroinvertebrate diversity assessment given the 118 

considerable seasonal variation in the wetted pond area (Armitage et al. 2012). To account for this 119 

variation, and to avoid any negative or destructive effects of sampling in very small waterbodies, the 120 

fixed time sampling strategy was modified and the sampling time allocated to each pond was 121 

proportional to its surface area up to a maximum of 3 minutes (Biggs et al. 1998). Thus, ponds with a 122 

surface area >50 m2 were sampled for 3 minutes, while for smaller ponds 30 seconds of sampling for 123 

every 10 m2 surface area was employed. A 1 mm mesh standard pond net was used to sample aquatic 124 

macroinvertebrates. The total sampling time designated to each pond was divided equally between the 125 

habitat units present (e.g., emergent macrophytes, submerged macrophytes and open water). If one 126 
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habitat type dominated, pond sampling time was divided to reflect this (Biggs et al. 1998). An 127 

inspection of any hard surfaces or larger substrates (e.g., large woody debris) for macroinvertebrate 128 

taxa was undertaken for up to 60 seconds during each sampling (Biggs et al. 1998). Sampling was not 129 

undertaken during the winter months as many aquatic invertebrates are relatively inactive due to 130 

reduced water temperatures, others may be present in the form of eggs or pupae which remain 131 

dormant until water temperatures increase in spring, while some adult life stages (e.g., Trichoptera 132 

and Coleoptera) seek refuge in adjacent terrestrial habitats (Chadd 2010), rendering them more 133 

difficult to sample. In addition, during winter, many floodplain ponds are inaccessible due to 134 

inundation by floodwaters. Aquatic macroinvertebrate samples from each season were preserved in 135 

the field and processed into 70% industrial methylated spirits (IMS) prior to identification. 136 

Identification was undertaken to species level wherever possible however, dipteran larvae and 137 

Planariidae were identified to family level and Hydrachnidiae, Oligochaeta and Collembola were 138 

recorded as such.  139 

 140 

Statistical analyses 141 

Aquatic macroinvertebrate diversity was examined across the three sampling seasons (spring, summer 142 

and autumn) by combining habitat species-abundance data for each site for all seasons. 143 

Macroinvertebrate community abundance and alpha diversity (characterised by taxon richness, 144 

Shannon Wiener Diversity index and the Berger Parker Dominance index) were calculated for each 145 

pond site in each season using Species Diversity and Richness IV software (Pisces Conservation 146 

2008). Prior to statistical analysis, the data was examined to ensure compliance with the underlying 147 

assumptions of parametric tests (e.g., normal distributions). Where data violated these assumptions 148 

(e.g., abundance data), they were log10 transformed. The statistical significance of variance in pond 149 

taxon richness, abundance, Shannon Wiener Diversity index and the Berger Parker Dominance index 150 

between spring, summer and autumn seasons among the four pond types was examined using nested 151 

analysis of variance (season nested within pond type) (Van de Meutter et al. 2005). The statistical 152 

significance of differences between the main macroinvertebrate groups and season was examined 153 



7 
 

using One-Way ANOVA. A post hoc Sidak test was employed to determine where significant 154 

differences between seasons occurred. All univariate analyses were undertaken in IBM SPSS 155 

Statistics (version 21, IBM Corporation, New York). The heterogeneity of seasonal macroinvertebrate 156 

communities (beta-diversity) was examined using Analysis of Similarity (ANOSIM) and Non-Metric 157 

multidimensional Scaling (NMDS - using Bray-Curtis dissimilarity metric), undertaken using 158 

PRIMER 6 (Clarke and Gorley 2006). Species-abundance data were log (X+1) transformed prior to 159 

ANOSIM and NMDS analysis. 160 

 161 

Results and Discussion 162 

Macroinvertebrate diversity 163 

A total of 228 taxa were recorded from 95 ponds over the three seasons, representing 19 orders and 68 164 

families (Table 1). Sampling across all three seasons provided the greatest aquatic macroinvertebrate 165 

biodiversity for the ponds examined. In addition, the inclusion of data from surveys for multiple 166 

seasons, clearly provided greater detail on the composition of the invertebrate community, and by 167 

extension an improved basis for management/conservation strategies designed to enhance pond 168 

biodiversity. However, undertaking surveys over three seasons raises a number of practical 169 

considerations in relation to financial cost and the time required to collect, process and identify 170 

samples, especially when stakeholders have limited resources and rapid delivery of project results is 171 

required (Oertli et al. 2005). This is especially true of pond restoration studies, where a minimum of 172 

2-3 years of sampling are required to determine if restoration measures have been successful (e.g., 173 

Sayer et al. 2013). In addition, many large-scale pond surveys rely on volunteers/citizen scientists to 174 

undertake the sampling (Freshwater Habitats Trust 2015a) and the requirement for samples over more 175 

than one season, may discourage volunteers from participating due to the increased time commitment. 176 

As a consequence, sampling of ponds has typically been undertaken over one season by necessity; this 177 

raises the question as to the optimum time to collect samples for biodiversity assessment.  178 
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If pond surveys are by necessity restricted to a single season, due to time and financial constraints, the 179 

results of this study indicate that the autumn (Sept-Oct) period yields the greatest macroinvertebrate 180 

biodiversity and supports the findings reported by Chadd (2010). Significantly greater taxon richness 181 

(ANOVA F2, 255=9.760; p<0.01), macroinvertebrate abundance (ANOVA F2, 255=7.284; p<0.01) and 182 

Shannon Wiener Diversity index scores (ANOVA F2, 255=5.139; p<0.01) were recorded from ponds 183 

(alpha diversity) during autumn compared to spring and summer seasons (Fig. 1; Table 1). Some 76% 184 

of total macroinvertebrate richness (174 taxa) was recorded in the autumn survey (228 taxa for all 185 

three seasons - Table 1). Further, the Berger Parker Dominance index was significantly lower 186 

(ANOVA F2, 255=3.236; p<0.01) in autumn compared to spring and summer (Fig. 1). Similar autumn 187 

peaks in macroinvertebrate biodiversity have been recorded in other studies in the UK, covering a 188 

range of pond types and settings, suggesting consistent seasonal patterns (Wood et al. 2001; Armitage 189 

et al. 2012). Pond restoration involving scrub and sediment removal is typically undertaken during 190 

early autumn after amphibian juveniles have migrated away from the pond basin and when farmland 191 

birds have finished rearing young. Thus, one advantage of autumn sampling is that it can be 192 

undertaken just prior to restoration management activities (Sayer et al. 2013). While the autumn 193 

season may be the optimal sampling period for ponds in lowland temperate maritime regions of 194 

Northern Europe and North America, it should be noted that the best time to sample pond 195 

communities in arid, semi-arid Mediterranean, tropical/sub-tropical or polar climates will probably 196 

differ. Indeed, this is especially true of temporary ponds in drier climates, where diversity typically 197 

peaks in late spring and ponds are generally subject to drying and desiccation by mid-summer 198 

(Waterkeyen et al. 2008; Florencio et al. 2009; Diaz-Paniagua et al. 2010; Florencio et al. 2014). 199 

Clearly, given the variable climate, hydrological regimes and invertebrate communities across 200 

different biomes, further research is required to determine the most appropriate time to sample 201 

macroinvertebrate biodiversity. 202 

In this study, some inconsistencies were evident in terms of macroinvertebrate seasonal responses 203 

across different landuses. Community abundance increased seasonally from spring to autumn in 204 

meadow, agricultural and forest ponds, but within urban ponds, abundance was lower during summer 205 



9 
 

(Fig. 2). Macroinvertebrate richness and Shannon Wiener Diversity index scores were highest during 206 

autumn compared to spring and summer among meadow and agricultural ponds, but were not 207 

significantly different among seasons for forest and urban ponds (Fig. 2). Nonetheless, the Berger 208 

Parker Dominance index was lowest in the autumn in all four pond types (Fig. 2). For alpha diversity, 209 

a significantly greater diversity of Hemiptera (ANOVA F2, 255=20.057; p<0.001), aquatic Coleoptera 210 

(particularly Dytiscidae) (ANOVA F2, 255=12.423; p<0.001), Gastopoda (ANOVA F2, 255=15.220; 211 

p<0.001) and Odonata (ANOVA F2, 255=10.085; p<0.001) taxa were recorded during the autumn 212 

compared to spring and summer (Fig. 3a, b, c, d). Additionally, significantly greater diversities of 213 

Diptera (ANOVA F2, 255=5.542; p<0.005) were recorded in the autumn compared to the summer 214 

season (ANOVA p<0.05) (Fig. 3e). In contrast, Trichoptera (particularly the families Limnephilidae 215 

and Leptoceridae) were characterised by significant reductions in taxon richness during the autumn 216 

season (ANOVA F2, 255=16.575; p<0.001) (Fig. 3f). Species within these trichopteran families 217 

typically emerge as adults during summer and autumn (Wallace et al. 2003), greatly reducing their 218 

abundance and diversity when compared to the spring. Similar patterns may also occur for other 219 

univoltine aquatic insect orders such as Ephemeroptera and Plecoptera with life histories including an 220 

aerial dispersal and reproductive phase (Menetrey et al. 2008; 2011), although both orders did not 221 

constitute major components of abundance or biodiversity (8 taxa) in this study.  222 

Pond community heterogeneity across different land-uses  223 

Significant macroinvertebrate community heterogeneity (beta-diversity) was recorded between the 224 

autumn season and the other two seasons (spring and summer) among the meadow and agricultural 225 

ponds (ANOSIM p<0.005). In addition, macroinvertebrate community composition within meadow 226 

ponds during spring was significantly different compared to the summer. This distinction between 227 

autumn invertebrate communities and other seasons for the meadow and agricultural ponds is clearly 228 

demonstrated in the NMDS plots (Fig. 4a, b). In marked contrast, no significant seasonal difference in 229 

macroinvertebrate community heterogeneity was observed for the forest and urban ponds (ANOSIM 230 

p>0.05) as illustrated by overlap of samples in the NMDS plots for all three seasons (Fig. 4c, d). The 231 

open landscape associated with meadow and agricultural ponds may have enabled macroinvertebrate 232 
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taxa to disperse and colonize other ponds more easily, which in turn may have facilitated the clear 233 

seasonal succession of taxa. In contrast, for urban and forest ponds, there was little seasonal 234 

difference in community composition or biodiversity. This probably reflects the structure of urban and 235 

forest landscapes. In urban areas, physical structures and management regimes may limit dispersal 236 

potential (active and passive) between ponds (Fahrig 2003), resulting in reduced opportunities for the 237 

recruitment of new invertebrate taxa. However, the similar faunal community composition recorded 238 

over the three seasons within urban ponds may also reflect the harsh environmental conditions 239 

generally associated with the urban environment especially, reduced refugia in urban ponds as a result 240 

of lower macrophyte coverage, reduced water quality from urban runoff, high densities of 241 

benthivorous fish and the non-natural bank (Heal et al. 2006; Hassall 2014; Hassall and Anderson 242 

2015). 243 

The long-term conservation of pond habitats is typically based on the presence of rare and endangered 244 

taxa and/or very high biodiversity (Hassall et al. 2012). For example, in the UK the designation of a 245 

pond as a Priority Habitat under the UK Post-2010 Biodiversity Framework (previously the 246 

biodiversity action plan) requires ponds to support >50 aquatic macroinvertebrate taxa, support Red 247 

Data Book species, UK Biodiversity Action Plan species or 3 nationally scarce aquatic 248 

macroinvertebrate taxa (BRIG 2008; JNCC and Defra 2012). Based on the results of this study, 249 

sampling over three seasons, or if restricted to one season, the autumn clearly provides the best 250 

opportunity to capture the greatest aquatic macroinvertebrate biodiversity in ponds. Currently the 251 

most widely employed methodologies for sampling ponds across Europe are based on summer 252 

surveys reflecting the desire to sample multiple groups of organisms, including littoral and aquatic 253 

macrophytes, macroinvertebrates, amphibians and fish (Environment Agency and Pond Conservation 254 

Trust 2002; Oertli et al. 2005). However, single season sampling will result in the underestimation of 255 

biodiversity of one or more of the groups. As a result it is important to clearly define the primary 256 

purpose of the sampling programme and its potential limitations in terms of the flora and fauna 257 

examined. Based on the results of this study, an overview of the ‘best’ season for aquatic 258 

macroinvertebrate surveys, that reflects the natural heterogeneity of the different groups and land use 259 
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can be made (Table 2). We recognise that this assessment may be incomplete and that in other 260 

biogeographical regions subject to different hydro-climatological regimes, additional surveys timed to 261 

coincide with particular life history stages may be required, with this especially true of rare or 262 

endangered species. In addition, for other taxonomic groups within ponds it may be appropriate or 263 

necessary to sample at other times. For example, amphibians are usually sampled during spring and/or 264 

early summer to assess breeding success and to capture various life-stages prior to their seasonal 265 

dispersal into the wider environment (Rubbo and Kiesecker 2005). Sampling of macrophytes is 266 

typically undertaken during the summer or early autumn months, when aquatic vegetation is more 267 

readily identifiable due to the presence of flowers and fruiting bodies (Akasaka and Takamura 2012) 268 

and dragonflies can also be effectively recorded during this time window. This study clearly illustrates 269 

that for aquatic macroinvertebrates the timing of the survey(s) depends on the purpose and 270 

information required and that multiple surveys in a single year provide the most comprehensive 271 

picture of total biodiversity. However, targeted surveys form an essential part of contemporary 272 

conservation and a balance is required between economic reality, scientific needs and a desire for data 273 

to underpin on-going management activities. Given the significant biological diversity and 274 

conservation value of ponds (Davies et al. 2008; Cereghino et al. 2014) and the services they provide 275 

to humans (e.g., diffuse pollutant removal, Carbon sequestering, flood reduction and water collection; 276 

Downing et al. 2008; Cereghino et al. 2014) statutory monitoring of these small freshwater habitats 277 

would be desirable to ensure the persistence and survival of freshwater biota in urban and rural areas 278 

and to assess the success of conservation efforts and restoration projects.  279 

 280 

Summary and Conclusions 281 

A total of 95 ponds were used to examine the taxonomic richness recorded from aquatic 282 

macroinvertebrate pond surveys across three seasons. The results of this study demonstrate that 283 

surveying aquatic macroinvertebrate communities across three seasons provides the most accurate 284 

representation of aquatic macroinvertebrate biodiversity within pond habitats, compared to single 285 

season sampling. Indeed restricting aquatic macroinvertebrate surveys to a single season may lead to 286 
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major underrepresentation of total biodiversity. However, if surveys are confined to a single season 287 

the results of this study indicate that autumn sampling provides the best opportunity for the evaluation 288 

of total macroinvertebrate biodiversity. Determining which season(s) provide the most comprehensive 289 

representation of aquatic macroinvertebrate biodiversity in ponds can provide more accurate 290 

information for the development and implementation of conservation and management strategies of 291 

ponds and the communities they support. 292 
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Acknowledgements 294 

The support of a Graduate School Studentship in the Department of Geography, Loughborough 295 

University is greatly acknowledged by MJH. The authors gratefully acknowledge Leicestershire and 296 

Rutland Wildlife Trust, Charnwood Borough Council and Leicestershire County Council that granted 297 

access to ponds on their land. Special thanks are also extended to farm owners for access to their land. 298 

Thanks are extended to Barry Kenny and Danielle Ashdown for their assistance in the field and 299 

laboratory.  300 

 301 

References 302 

Akasaka, M., and Takamura, N. (2012). Hydrologic connection between ponds positively affects 303 

macrophyte α and γ diversity but negatively affects β diversity. Ecology, 93, 967-973. 304 

Armitage, P. D., Hawczak, A. and Blackburn, J. H. (2012). Tyre track pools and puddles – 305 

Anthropogenic contributors to aquatic biodiversity. Limnologica, 42, 254-263. 306 

Bazzanti, M., Coccia, C., and Giuseppina Dowgiallo, M. 2010. Microdistribution of 307 

macroinvertebrates in a temporary pond of Central Italy: taxonomic and functional 308 

analyses. Limnologica-Ecology and Management of Inland Waters, 40, 291-299. 309 



13 
 

Becerra-Jurado, G., Forster, G. and Kelly-Quinn, M. (2012). Integrated Constructed Wetlands: 310 

hotspots for freshwater coleopteran diversity in the landscape of Ireland. Biology and 311 

Environment Proceedings of the Royal Irish Academy, 114B, 271-279. 312 

Becerra-Jurado, G., Johnson, J., Felley, H., Harrington, R., Kelly-Quinn, M. (2010). The potential of 313 

Integrated Constructed Wetlands (ICWs) to enhance macroinvertebrate diversity in agricultural 314 

landscapes. Wetlands, 30, 393-404. 315 

Biggs, J., Fox, G., Whitfield, M. and Williams, P. (1998). A guide to the methods of the National 316 

Pond Survey. Oxford: Action. 317 

Biggs, J., Williams, P., Whitfield, M., Nicolet, P. and Weatherby, A. (2005). 15 years of pond 318 

assessment in Britain: results and lessons learned from the work of pond conservation. Aquatic 319 

Conservation: Marine and Freshwater Ecosystems, 15, 693-714. 320 

Biggs, J., Williams, P., Whitfield, M., Nicolet, P., Brown, C., Hollis, J., Arnold, D. and Pepper, T. 321 

(2007). The Freshwater biota of British agricultural landscapes and their sensitivity to 322 

pesticides. Agriculture, Ecosystems and Environment, 122, 137-148. 323 

Bilton, D. T., McAbendroth, L. C., Nicolet, P., Bedford, A., Rundle, S. D., Foggo, A. and Ramsay, P. 324 

M. (2009). Ecology and conservation status of temporary and fluctuating ponds in two areas of 325 

southern England. Aquatic Conservation: Marine and Freshwater Ecosystems, 19, 134-146. 326 

Birk, S., Bonne, W., Borja, A., Brucet, S., Courrat, A., Poikane, S., Solimini, A., van de Bund, W., 327 

Zampoukas, N. and Hering, D. (2012). Three hundred ways to assess Europe’s surface waters: 328 

an almost complete overview of biological methods to implement the Water Framework 329 

Directive. Ecological Indicators, 18, 31-41. 330 

Briers, R. A. (2014). Invertebrate communities and environmental conditions in a series of urban 331 

drainage ponds in Eastern Scotland: implications for biodiversity and conservation value of 332 

SUDS. Clean - Soil, Air, Water, 42, 193-200. 333 



14 
 

BRIG. (2008). UK Biodiversity Action Plan Priority Habitat Descriptions; Ponds. 334 

http://jncc.defra.gov.uk/PDF/UKBAP_PriorityHabitatDesc-Rev2010.pdf [Last accessed 335 

09/02/2016]. 336 

Brönmark, C. (1985). Freshwater snail diversity: effects of pond area, habitat heterogeneity and 337 

isolation. Oecologia, 67, 127-131.  338 

Chadd, R. (2010). Assessment of aquatic invertebrates. In Hurford, C., Schneider, M. and Cowx, I. 339 

(Ed.), Conservation Monitoring in Freshwater Habitats (Practical Guide and Case Studies). 340 

Dordrecht: Springer Science & Business Media. 341 

Chaichana, R., Leah, R. and Moss, B. (2011). Conservation of pond systems: a case study of 342 

intractability, Brown Moss, UK, Hydrobiologia. 664, 17-33.  343 

Céréghino, R., Boix, D., Cauchie, H., Martens, K. and Oertli, B. (2014). The ecological role of ponds 344 

in a changing world. Hydrobiologia, 723, 1-6. 345 

Céréghino, R., Ruggiero, A., Marty, P. and Angélibert, S. (2008). Biodiversity and distribution 346 

patterns of freshwater invertebrates in farm ponds of a south-western French agricultural 347 

landscape. Hydrobiologia, 597, 43-51.  348 

Clarke, K. R., and Gorley, R. N. (2006). PRIMER v6: User Manual/Tutorial. Plymouth, UK: 349 

PRIMER E-Ltd. 350 

Colding, J., Lundberg, J., Lundberg, S. and Andersson, E. (2009). Golf courses and wetland fauna. 351 

Ecological Applications, 19, 1481-1491. 352 

Collinson, N. H., Biggs, J., Corfield, A., Hodson, M. J., Walker, D., Whitfield, M. and Williams, P. 353 

(1995). Temporary and permanent ponds: an assessment of the effects of drying out on the 354 

conservation value of aquatic macroinvertebrate communities. Biological Conservation, 74, 355 

125-133.  356 



15 
 

Davies, B, R., Biggs, J., Williams, P., Whitfield, M., Nicolet, P., Sear, D., Bray, S. and Maund, S. 357 

(2008). Comparative biodiversity of aquatic habitats in the European agricultural landscape. 358 

Agriculture, Ecosystems and Environment, 125, 1-8 359 

DCPWA (2014) Derby City Pond Warden Association Website. Available at: 360 

http://www.dcpwa.org.uk/ [Access Date: 30th April 2015]. 361 

Declerck. S., De Bie. T., Ercken. D., Hampel. H., Schrijvers. S., Van Wichelen. J., Gillard. V., 362 

Mandiki. R., Losson. B., Bauwens. D., Keijers. S., Vyverman. W., Goddeeris. B., De Meester. 363 

L., Brendonck. L. and Martens. K. (2006). Ecological characteristics of small farmland ponds: 364 

Associations with land use practices at multiple spatial scales. Biological Conservation, 131, 365 

523–532. 366 

Della Bella, V., Bazzanti, M. and Chiarotti, F. (2005). Macroinvertebrate diversity and conservation 367 

status of Mediterranean ponds in Italy: water permanence and mesohabitat influence. Aquatic 368 

Conservation: Marine and Freshwater Ecosystems, 15, 583-600. 369 

Díaz-Paniagua, C., Fernandez-Zamudio, R., Florencio, M., García-Murillo, P. Gómez-Rodríguez, C., 370 

Portheault, A., Serrano, L. and Siljeström, P. (2010). Temporary ponds from Donana National 371 

Park: a system of natural habitats for the preservation of aquatic flora and fauna. Limnetica, 29, 372 

41-58. 373 

Downing, J. A., Cole, J. J., Middelburg, J. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Prairie, Y. 374 

T. and Laube, K. A. (2008). Sediment organic carbon burial in agriculturally eutrophic 375 

impoundments over the last century. Global Biogeochemical Cycles. 22, 1-10. 376 

EC (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 377 

establishing a framework for Community action in the field of water policy, 22/12/2000. 378 

Official Journal 327/1: 1-73. 379 

Environment Agency and Ponds Conservation Trust. (2002). A guide to monitoring the ecological 380 

quality of ponds and canals using PSYM. Oxford: PCTPR. 381 



16 
 

Fahrig, L. (2003). Effects of habitat fragmentation on Biodiversity. Annual Review of Ecology 382 

Evolution and Systematics, 34, 487-515. 383 

Florencio, M., Díaz‐Paniagua, C., Gómez‐Rodríguez, C. and Serrano, L. (2014). Biodiversity patterns 384 

in a macroinvertebrate community of a temporary pond network. Insect Conservation and 385 

Diversity, 7, 4-21.  386 

Florencio, M., Serrano, L., Gómez-Rodríguez, C., Milan, A. and Díaz-Paniagua, C. (2009). Inter- and 387 

intra-annual variations of macroinvertebrate assemblages are related to the hydroperiod in 388 

Mediterranean temporary ponds. Hydrobiologia, 634, 167-183. 389 

Freshwater Habitats Trust. (2015a). Pond Net survey options & recording forms. Available at 390 

http://www.freshwaterhabitats.org.uk/projects/pondnet/survey-options/ [Access Date: 31 July 391 

2015].  392 

Freshwater Habitats Trust. (2015b). Million Ponds Project. Available at: 393 

http://www.freshwaterhabitats.org.uk/projects/million-ponds/ [Access Date: 28 August 2015]. 394 

Freshwater Habitats Trust. (2015c). Available at: 395 

http://www.freshwaterhabitats.org.uk/projects/people-ponds-water/ [Access Date: 28 August 396 

2015]. 397 

Fuentes-Rodríguez, F., Juan, M., Gallego, I., Lusi, M., Fenoy, E., León, D., Penalver, P., Toja, J. and 398 

Casas, J. J. (2013). Diversity in Mediterranean farm ponds: trade‐offs and synergies between 399 

irrigation modernisation and biodiversity conservation. Freshwater Biology, 58, 63-78. 400 

Gioria, M., Schaffers, A., Bacaro, G. and Feehan, J. (2010). The conservation value of farmland 401 

ponds: predicting water beetle assemblages using vascular plants as a surrogate group. 402 

Biological Conservation, 143, 1125-1133.  403 

Hassall, C. (2014). The ecology and biodiversity of urban ponds. Wiley Interdisciplinary Reviews: 404 

Water, 1, 187-206.  405 

http://www.freshwaterhabitats.org.uk/projects/pondnet/survey-options/
http://www.freshwaterhabitats.org.uk/projects/million-ponds/
http://www.freshwaterhabitats.org.uk/projects/people-ponds-water/


17 
 

Hassall, C. and Anderson, S. (2015). Storm water ponds can contain comparable biodiversity to 406 

unmanaged wetlands in urban areas. Hydrobiologia, 745, 137-149. 407 

Hassall, C., Hollinshead, J. and Hull, A. (2012). Temporal dynamics of aquatic communities and 408 

implications for pond conservation. Biodiversity and Conservation, 21, 829-852. 409 

Heal, K. V., Hepburn, D. A. and Lunn, R. J. (2006). Sediment management in sustainable urban 410 

drainage system ponds. Water Science and Technology, 53, 219-227 411 

Hill, M. J., Mathers, K. L. and Wood, P. J. (2015). The aquatic macroinvertebrate biodiversity of 412 

urban ponds in a medium sized European town (Loughborough, UK). Hydrobiologia, 760, 225-413 

238. 414 

Jeffries, M. (1991). The ecology and conservation value of forestry ponds in Scotland, United 415 

Kingdom. Biological Conservation, 58, 191-211. 416 

JNCC and DEFRA. (2012). UK Post-2010 Biodiversity Framework. 417 

http://jncc.defra.gov.uk/pdf/UK_Post2010_Bio-Fwork.pdf. [Access Date: 31 July 2015] 418 

Le Viol, I., Mocq, J., Julliard, R. and Kerbiriou, C. (2009). The contribution of motorway storm water 419 

retention ponds to the biodiversity of aquatic macroinvertebrates. Biological Conservation, 142, 420 

3163-3171. 421 

Lukacs, B. A. Sramko, G. and Molnar, A. (2013). Plant diversity and conservation value of 422 

continental temporary pools. Biological Conservation, 158, 393-400. 423 

Menetrey, N., Oertli, B., Sartori, S. and Wagner, A. (2008). Eutrophication: are mayflies 424 

(Ephemeroptera) good bioindicators for ponds? Hydrobiologia, 597, 125-135.  425 

Menetrey, N., Oertli, B. and Lachavanne, J. (2011). The CIEPT: A macroinvertebrate-based 426 

multimetric index for assessing the ecological quality of Swiss lowland ponds. Ecological 427 

Indicators, 11, 590-600. 428 

Michelutti, N., Mallory, M. L. Blais, J. M., Douglas, M. S. V. and Smol, J. P. (2011). Chironomid 429 

assemblages from seabird affected high Arctic ponds. Polar Biology 34, 799-812.  430 

http://jncc.defra.gov.uk/pdf/UK_Post2010_Bio-Fwork.pdf


18 
 

Nakanishi, K., Nishida, T., Kon. M. and Sawada, H. (2014). Effects of environmental factors on the 431 

species composition of aquatic insects in irrigation ponds. Entomological Science, 17, 251-261. 432 

Noble, A. and Hassall, C. (2014). Poor ecological quality of urban ponds in northern England: causes 433 

and consequences. Urban Ecosystems, 1-14. 434 

Oertli, B., Auderset Joye, D., Castella, E., Juge, R., Lehmann, A. and Lachavanne J. (2005). PLOCH: 435 

a standardized method for sampling and assessing the biodiversity in ponds. Aquatic 436 

Conservation: Marine and Freshwater Ecosystems, 15, 665-679. 437 

Picazo, F., Bilton, D. T., Moreno, J. L., Sanchez-Fernandez, D. and Millan, A. (2012). Water beetle 438 

biodiversity in Mediterranean standing waters: assemblage composition, environmental drivers 439 

and nestedness patterns. Insect Conservation and Diversity, 5, 146-158.  440 

Pisces Conservation Ltd. (2008). Species Diversity and Richness IV. Lymington, UK: Pisces 441 

Conservation Ltd. 442 

Raebel, E. M., Merckx, T., Feber, R. E., Riordan, P., Macdonald, D. W. and Thompson, D. J. (2011). 443 

Identifying high quality pond habitats for Odonata in lowland England: implications for agri-444 

environment schemes. Insect Conservation and Diversity, 5, 422-432. 445 

Rubbo, M. J. and Kiesecker, J.M. (2005). Amphibian breeding distribution in an urbanized landscape. 446 

Conservation Biology, 19, 504-511. 447 

Rufer, M. M. and Ferrington Jnr, L. C. (2008). Sampling frequency required for Chironomid 448 

community resolution in urban lakes with contrasting trophic states. Boletim do Museu 449 

Municipal do Funchal, 13, 77-84. 450 

Ruggiero, A., Céréghino, R., Figuerola, J., Marty, P. and Angélibert, S. (2008). Farm ponds make a 451 

contribution to the biodiversity of aquatic insects in a French agricultural landscape. Comptes 452 

Rendus Biologies, 331, 298-308. 453 

Ruse, L. P. (2013). Chironomid (Diptera) Species recorded from UK lakes as pupal exuviae. Journal 454 

of Entomological and Acarological Research, 45, 69-72. 455 



19 
 

Sayer, C. D., Andrews, K., Shilland, E., Edmonds, N., Edmonds‐Brown, R., Patmore, I. R., Emson, D. 456 

and Axmacher, J. (2012). The role of pond management for biodiversity conservation in an 457 

agricultural landscape. Aquatic Conservation: Marine and Freshwater Ecosystems, 22, 626-638. 458 

Sayer, C., Shilland, E., Greaves, H., Dawson, B., Patmore, I., Emson, D., Alderton, E., Robinson, P., 459 

Andrews, K., Axmacher, J. and Wiik, E. (2013). Managing Britain's ponds-conservation 460 

lessons from a Norfolk farm. British Wildlife, 25, 21-28. 461 

Usio, N., Imada, M., Nakagawa, M., Akasaka, M. and Takamura, N. (2013). Effects of pond draining 462 

on biodiversity and water quality of farm ponds. Conservation Biology, 27, 1429-1438. 463 

Van de Meutter, F., Stoks, R. and De Meester, L. (2005). The effect of turbidity state and microhabitat 464 

on macroinvertebrate assemblages: a pilot study of six shallow lakes. Hydrobiologia, 542, 379-465 

390. 466 

Wallace, I. D., Wallace, B. and Philipson, G. N. (2003). Case-bearing caddis larvae of Britain and 467 

Ireland, Freshwater Biological Association Scientific Publication No. 61, Cumbria, UK: 468 

Freshwater Biological Association. 469 

Waterkeyn, A., Grillas, P., Vanschoenwinkel, B. and Brendonck, L. (2008). Invertebrate community 470 

patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. 471 

Freshwater Biology, 53, 1808-1822. 472 

Williams, P., Whitfield, M., Biggs, J., Bray, S., Fox, G., Nicolet, P. and Sear, D. (2003). Comparative 473 

biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern 474 

England. Biological Conservation, 115, 329-341. 475 

Wood, P. J., Greenwood, M. T., Barker, S. A. and Gunn, J. (2001). The effects of amenity 476 

management for angling on the conservation value of aquatic invertebrate communities in old 477 

industrial mill ponds. Biological Conservation, 102, 17-29. 478 

 479 

  480 



20 
 

Tables 481 

Table 1- Summary table of the number of macroinvertebrate taxa abundance collected from the three 482 
sampling seasons: spring 2012, summer 2012 and autumn 2012. 483 

 484 

 
Spring Summer Autumn Total (all seasons combined) 

Total taxon richness 166 154 174 228 
Mean taxon richness 14 14 22 29 
Mean abundance 538 498 1185 1948 
% of total taxon richness (all 
seasons combined) supported 72% 68% 76% 100% 
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Table 2 - Proposed best time to sample total macroinvertebrate diversity and particular 507 
macroinvertebrate groups if restricted to a single survey season across 4 land use types.  508 

 509 

 
Total 

Diversity Coleoptera Hemiptera Gastropoda Odonata Diptera Trichoptera 

Landscape Autumn Autumn Autumn Autumn Autumn Autumn Spring 
Meadow Autumn Autumn Autumn Autumn Autumn Autumn Spring 

Agricultural Autumn Autumn Autumn Autumn Autumn Autumn Spring or 
Summer 

Forest  Any Autumn Any Any Any Summer or 
Autumn Spring  

Urban Any Any Autumn Any Autumn Any Spring 
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Figure Captions 

Fig. 1 Mean (+/- 1SE) community abundance (log10) (a), taxon richness (b), Shannon Wiener Diversity 

Index (c) and Berger Parker Dominance Index (d) recorded for ponds during the spring, summer and 

autumn sampling seasons. 

Fig. 2 Mean (+/- 1SE) community abundance (log10) (a), taxon richness (b), Shannon Wiener Diversity 

Index (c) and Berger Parker Dominance Index (d) recorded for meadow, agricultural, forest and urban 

ponds during the spring, summer and autumn sampling seasons. 

Fig. 3 Mean (+/- 1SE) taxon richness of Hemiptera (a) aquatic Coleoptera (b), Gastropoda (c), Odonata 

(d), Diptera (e) and Trichoptera (f) recorded for ponds during the spring, summer and autumn sampling 

seasons. 

Fig. 4 Two dimensional NMDS plot of dissimilarity (Bray-Curtis) of seasonal (spring, summer and 

autumn) invertebrate communities within the four pond types; (a) meadow (b) agricultural (c) forest and 

(d) urban.  
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Fig. 3 
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