69 research outputs found
Enhancing single-molecule photostability by optical feedback from quantum-jump detection
We report an optical technique that yields an enhancement of single-molecule
photostability, by greatly suppressing photobleaching pathways which involve
photoexcitation from the triplet state. This is accomplished by dynamically
switching off the excitation laser when a quantum-jump of the molecule to the
triplet state is optically detected. This procedure leads to a lengthened
single-molecule observation time and an increased total number of detected
photons. The resulting improvement in photostability unambiguously confirms the
importance of photoexcitation from the triplet state in photobleaching
dynamics, and may allow the investigation of new phenomena at the
single-molecule level
Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission
International audienceIncandescent filaments and membranes are often used as infrared sources despite their low efficiency, broad angular emission, and lack of spectral selectivity. Here, we introduce a metasurface to control simultaneously the spectrum and the directivity of blackbody radiation. The plasmonic metasurface operates reliably at 600 °C with an emissivity higher than 0.85 in a narrow frequency band and in a narrow solid angle. This emitter paves the way for the development of compact, efficient, and cheap IR sources and gas detection systems
Improvement of infrared single-photon detectors absorptance by integrated plasmonic structures
Plasmonic structures open novel avenues in photodetector development. Optimized illumination configurations are reported to improve p-polarized light absorptance in superconducting-nanowire single-photon detectors (SNSPDs) comprising short- and long-periodic niobium-nitride (NbN) stripe-patterns. In OC-SNSPDs consisting of ~quarter-wavelength dielectric layer closed by a gold reflector the highest absorptance is attainable at perpendicular incidence onto NbN patterns in P-orientation due to E-field concentration at the bottom of nano-cavities. In NCAI-SNSPDs integrated with nano-cavity-arrays consisting of vertical and horizontal gold segments off-axis illumination in S-orientation results in polar-angle-independent perfect absorptance via collective resonances in short-periodic design, while in long-periodic NCAI-SNSPDs grating-coupled surface waves promote EM-field transportation to the NbN stripes and result in local absorptance maxima. In NCDAI-SNSPDs integrated with nano-cavity-deflector-array consisting of longer vertical gold segments large absorptance maxima appear in 3p-periodic designs due to E-field enhancement via grating-coupled surface waves synchronized with the NbN stripes in S-orientation, which enable to compensate fill-factor-related retrogression.United States. Dept. of Energy (Frontier Research Centers
Old lineage on an old island : Pixibinthus, a new cricket genus endemic to New Caledonia shed light on gryllid diversification in a hotspot of biodiversity
Few studies have focused on the early colonization of New Caledonia by insects, after the re-emergence of the main island, 37 Myr ago. Here we investigate the mode and tempo of evolution of a new endemic cricket genus, Pixibinthus, recently discovered in southern New Caledonia. First we formally describe this new monotypic genus found exclusively in the open shrubby vegetation on metalliferous soils, named 'maquis minier', unique to New Caledonia. We then reconstruct a dated molecular phylogeny based on five mitochondrial and four nuclear loci in order to establish relationships of Pixibinthus within Eneopterinae crickets. Pixibinthus is recovered as thesister clade of the endemic genus Agnotecous, mostly rainforest-dwellers. Dating results show that the island colonization by their common ancestor occurred around 34.7 Myr, shortly after New Caledonia re-emergence. Pixibinthus and Agnotecous are then one of the oldest insect lineages documented so far for New Caledonia. This discovery highlights for the first time two clear-cut ecological specializations between sister clades, as Agnotecous is mainly found in rainforests with 19 species, whereas Pixibinthus is found in open habitats with a single documented species. The preference of Pixibinthus for open habitats and of Agnotecous for forest habitats nicely fits an acoustic specialization, either explained by differences in body size or in acoustic properties of their respective habitats. We hypothesize that landscape dynamics, linked to major past climatic events and recent change in fire regimes are possible causes for both present-day low diversity and rarity in genus Pixibinthus. The unique evolutionary history of this old New Caledonian lineage stresses the importance to increase our knowledge on the faunal biodiversity of 'maquis minier', in order to better understand the origin and past dynamics of New Caledonian biota
Détection cohérente du rayonnement de second harmonique en microscopie non-linéaire
Nous présentons un systÚme de détection
cohérente de signal de second harmonique en microscopie
non-linéaire, dans une configuration de type homodyne balancée.
Cette mesure interférométrique permet d'accéder à la phase
du signal de second harmonique, avec une sensibilitĂ© adaptĂ©e Ă
l'étude de nano-objets individuels asymétriques
Resonant transmission of light in the infrared by SiC gratings supporting phonon polaritons
We obtain resonant transmission in the range with SiC gratings. We used a Rigorous Coupled Wave Analysis (RCWA) algorithm to calculate the transmission spectra of slits and holes gratings. This resonant transmission is due to the excitation of surface waves which are in this case surface phonon-polaritons
- âŠ