500 research outputs found

    Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles

    Full text link
    It is known that silicon is an indirect band gap material, reducing its efficiency in photovoltaic applications. Using surface plasmons in metallic nanoparticles embedded in a solar cell has recently been proposed as a way to increase the efficiency of thin film silicon solar cells. The dipole mode that dominates the plasmons in small particles produces an electric field having Fourier components with all wave numbers. In this work, we show that such a field creates electron-hole-pairs without phonon assistance, and discuss the importance of this effect compared to radiation from the particle and losses due to heating.Comment: 1 figur

    Derivation of the Lorentz Force Law, the Magnetic Field Concept and the Faraday-Lenz Law using an Invariant Formulation of the Lorentz Transformation

    Full text link
    It is demonstrated how the right hand sides of the Lorentz Transformation equations may be written, in a Lorentz invariant manner, as 4--vector scalar products. This implies the existence of invariant length intervals analogous to invariant proper time intervals. This formalism, making essential use of the 4-vector electromagnetic potential concept, provides a short derivation of the Lorentz force law of classical electrodynamics, the conventional definition of the magnetic field, in terms of spatial derivatives of the 4--vector potential and the Faraday-Lenz Law. An important distinction between the physical meanings of the space-time and energy-momentum 4--vectors is pointed out.Comment: 15 pages, no tables 1 figure. Revised and extended version of physics/0307133 Some typos removed and minor text improvements in this versio

    Link Prediction Based on Local Random Walk

    Get PDF
    The problem of missing link prediction in complex networks has attracted much attention recently. Two difficulties in link prediction are the sparsity and huge size of the target networks. Therefore, the design of an efficient and effective method is of both theoretical interests and practical significance. In this Letter, we proposed a method based on local random walk, which can give competitively good prediction or even better prediction than other random-walk-based methods while has a lower computational complexity.Comment: 6 pages, 2 figure

    Phosphorylation of phytochrome B inhibits light-induced signaling via accelerated dark reversion in Arabidopsis

    Get PDF
    The photoreceptor phytochrome B (phyB) interconverts between the biologically active Pfr (lmax = 730 nm) and inactive Pr (lmax = 660 nm) forms in a red/far-red–dependent fashion and regulates, as molecular switch, many aspects of lightdependent development in Arabidopsis thaliana. phyB signaling is launched by the biologically active Pfr conformer and mediated by specific protein–protein interactions between phyB Pfr and its downstream regulatory partners, whereas conversion of Pfr to Pr terminates signaling. Here, we provide evidence that phyB is phosphorylated in planta at Ser-86 located in the N-terminal domain of the photoreceptor. Analysis of phyB-9 transgenic plants expressing phospho-mimic and nonphosphorylatable phyB–yellow fluorescent protein (YFP) fusions demonstrated that phosphorylation of Ser-86 negatively regulates all physiological responses tested. The Ser86Asp and Ser86Ala substitutions do not affect stability, photoconversion, and spectral properties of the photoreceptor, but light-independent relaxation of the phyBSer86Asp Pfr into Pr, also termed dark reversion, is strongly enhanced both in vivo and in vitro. Faster dark reversion attenuates red light–induced nuclear import and interaction of phyBSer86Asp-YFP Pfr with the negative regulator PHYTOCHROME INTERACTING FACTOR3 compared with phyB–green fluorescent protein. These data suggest that accelerated inactivation of the photoreceptor phyB via phosphorylation of Ser-86 represents a new paradigm for modulating phytochrome-controlled signaling

    Vertex similarity in networks

    Full text link
    We consider methods for quantifying the similarity of vertices in networks. We propose a measure of similarity based on the concept that two vertices are similar if their immediate neighbors in the network are themselves similar. This leads to a self-consistent matrix formulation of similarity that can be evaluated iteratively using only a knowledge of the adjacency matrix of the network. We test our similarity measure on computer-generated networks for which the expected results are known, and on a number of real-world networks

    Numerical modeling and simulation of supersonic flows in propulsion systems by open-source solvers

    Get PDF
    Two open-source solvers, Eilmer and hyFoam, are here considered for their performance in simulating high-speed flows in different flow conditions and geometric configurations typical of propulsive systems at supersonic speeds. The goal is to identify the open-source platform providing the best compromise between accuracy, flexibility and computational cost to eventually simulate the flow fields inside ramjet and scramjet engines. The differences in terms of discretization and solution methods of the selected solvers are discussed in terms of their impact on solution accuracy and computational efficiency and in view of the aerothermodynamic analysis and design of future trans-atmospheric propulsive systems. In this work steady state problems are considered. Numerical results of two scramjet type engines demonstrated a similar predictive capability of both codes in non-reacting conditions. These results highlight their potential to be considered for further characterization of overall engine performance

    Bleaching forces coral’s heterotrophy on diazotrophs and Synechococcus

    Get PDF
    © 2019, International Society for Microbial Ecology. Coral reefs are threatened by global warming, which disrupts the symbiosis between corals and their photosynthetic symbionts (Symbiodiniaceae), leading to mass coral bleaching. Planktonic diazotrophs or dinitrogen (N2)-fixing prokaryotes are abundant in coral lagoon waters and could be an alternative nutrient source for corals. Here we incubated untreated and bleached coral colonies of Stylophora pistillata with a 15N2-pre-labelled natural plankton assemblage containing diazotrophs. 15N2 assimilation rates in Symbiodiniaceae cells and tissues of bleached corals were 5- and 30-fold higher, respectively, than those measured in untreated corals, demonstrating that corals incorporate more nitrogen derived from planktonic diazotrophs under bleaching conditions. Bleached corals also preferentially fed on Synechococcus, nitrogen-rich picophytoplanktonic cells, instead of Prochlorococcus and picoeukaryotes, which have a lower cellular nitrogen content. By providing an alternative source of bioavailable nitrogen, both the incorporation of nitrogen derived from planktonic diazotrophs and the ingestion of Synechococcus may have profound consequences for coral bleaching recovery, especially for the many coral reef ecosystems characterized by high abundance and activity of planktonic diazotrophs

    Effective and Efficient Similarity Index for Link Prediction of Complex Networks

    Get PDF
    Predictions of missing links of incomplete networks like protein-protein interaction networks or very likely but not yet existent links in evolutionary networks like friendship networks in web society can be considered as a guideline for further experiments or valuable information for web users. In this paper, we introduce a local path index to estimate the likelihood of the existence of a link between two nodes. We propose a network model with controllable density and noise strength in generating links, as well as collect data of six real networks. Extensive numerical simulations on both modeled networks and real networks demonstrated the high effectiveness and efficiency of the local path index compared with two well-known and widely used indices, the common neighbors and the Katz index. Indeed, the local path index provides competitively accurate predictions as the Katz index while requires much less CPU time and memory space, which is therefore a strong candidate for potential practical applications in data mining of huge-size networks.Comment: 8 pages, 5 figures, 3 table

    Voltage-programmable liquid optical interface

    Get PDF
    Recently, there has been intense interest in photonic devices based on microfluidics, including displays and refractive tunable microlenses and optical beamsteerers, that work using the principle of electrowetting. Here, we report a novel approach to optical devices in which static wrinkles are produced at the surface of a thin film of oil as a result of dielectrophoretic forces. We have demonstrated this voltage-programmable surface wrinkling effect in periodic devices with pitch lengths of between 20 and 240 µm and with response times of less than 40 µs. By a careful choice of oils, it is possible to optimize either for high-amplitude sinusoidal wrinkles at micrometre-scale pitches or more complex non-sinusoidal profiles with higher Fourier components at longer pitches. This opens up the possibility of developing rapidly responsive voltage-programmable, polarization-insensitive transmission and reflection diffraction devices and arbitrary surface profile optical devices
    corecore