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Abstract – The problem of missing link prediction in complex networks has attracted much
attention recently. Two difficulties in link prediction are the sparsity and huge size of the target
networks. Therefore, to design an efficient and effective method is of both theoretical interest and
practical significance. In this letter, we proposed a method based on local random walk, which can
give competitively good or even better prediction than other random-walk–based methods while
having a much lower computational complexity.

Introduction. – Recently, the problem of missing link
prediction in complex networks has attracted much atten-
tion [1–3]. Link prediction aims at estimating the like-
lihood of the existence of a link between two nodes.
For some networks, especially biological networks such as
protein-protein interaction networks, metabolic networks
and food webs, the discovery of links is costly in the labo-
ratory or the field, and thus the current knowledge of
those networks is substantially incomplete [4,5]. Instead of
blindly checking all the possible links, predictions based on
the observed links and focusing on those links which are
most likely to exist can sharply reduce the experimental
costs if the predictions are accurate enough [1]. For some
others like online friendship networks, very likely but not
yet existent links can be suggested to users as recommen-
dations of promising friendships, which can help users in
finding new friends and thus enhance their loyalties to the
web sites. In addition, the link prediction algorithms can
be applied to solve the classification problem in partially
labeled networks [6], such as to distinguish the research
areas of scientific publications.
Commonly, two nodes are more likely to be connected

if they are more similar, where a latent assumption is
that the link itself indicates a similarity between the
two endpoints and this similarity can be transferred
through the links. In this case, the similarity indices
are used to quantify the structural equivalence (see, for
example, the Leicht-Holme-Newman index [7] and the
transferring similarity [8]). However, in some networks
the two endpoints of one link are not essentially similar,
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such as the sexual network [9] and the word co-occurrence
networks [10]. In these cases, we can use the regular
equivalence (see ref. [11] for regular equivalence), which
indicates that two nodes are similar if they have connected
to similar nodes. How to predict missing links in such
kind of networks is still an open problem to us. Our study
focuses on structure equivalence.
Node similarity can be defined by the essential

attributes of nodes. For example, if two persons have
the same age, sex and job, we can say that they are
similar. Another group of similarities is based only on
the network structure. An introduction and a comparison
of some similarity indices are presented in ref. [2], where
the Common Neighbours [12], Jaccard coefficient [13],
Adamic-Adar Index [14] and Preferential Attachment [15]
are the node-dependent indices that require only the
information about node degree and the nearest neigh-
borhood, while the Katz Index [16], Hitting Time [17],
Commute Time [18], Rooted PageRank [19], SimRank [20]
and Blondel Index [21] belong to the path-dependent
indices that ask for global knowledge of the network
topology. In ref. [22], Zhou et al. proposed two new local
indices, Resource Allocation index and Local Path index.
Empirical results show that these two indices perform
better than nine other known local indices (see ref. [22]
for details). In particular, the local path index, asking for
a little bit more information than common neighbours,
provides competitively accurate prediction compared with
the global Katz index [23]. Lü and Zhou [24] studied the
link prediction problem in weighted networks, and found
that the weak links may play a more important role than
strong links (see the well-known weak-ties theory [25] in

Published in "�������	
�	�
�����	���������������������"
which should be cited to refer to this work.

ht
tp
://
do
c.
re
ro
.c
h

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/20651384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


social sciences). Besides, Clauset et al. [1] proposed an
algorithm based on the hierarchical network structure,
which gives good predictions for the networks with
hierarchical structures, such as grassland species food web
and terrorist association network. In real applications,
similarity indices only exploiting local information are
more efficient than those based on global information,
for their lower computational complexity. However, due
to the insufficient information, local indices may be less
effective for their lower prediction accuracy. To design
an efficient and effective algorithm is a main challenge in
link prediction.
In this letter, we define the node similarity based

on local random walk, which has lower computational
complexity compared with other random-walk–based simi-
larity indices, such as average commute time (ACT)
and random walk with restart (RWR). We compare our
method with five representative indices, including three
local ones (common neighbours, resource allocation and
local path indices) and two global ones (ACT and RWR),
as well as the hierarchical structure method. Empiri-
cal results on five real networks show that our method
performs best.

Similarity based on local random walk. – Consider
an undirected simple network G(V,E), where V is the
set of nodes and E is the set of links. Multiple links
and self-connections are not allowed. For each pair of
nodes, x, y ∈ V , we assign a score, sxy. In this letter, we
adopt the simplest framework, that is, to directly set the
similarity as the score. All the nonexistent links are sorted
in descending order according to their scores, and the links
at the top are most likely to exist.
Random walk is a Markov chain that describes the

sequence of nodes visited by a random walker [26,27].
This process can be described by the transition probability
matrix, P , with Pxy = axy/kx presenting the probability
that a random walker staying at node x will walk to y in
the next step, where axy equals 1 if node x and node y are
connected, 0 otherwise, and kx denotes the degree of node
x. Given a random walker starting from node x, denoting
by πxy(t) the probability that this walker locates at node
y after t steps, we have

�πx(t) = P
T�πx(t− 1), (1)

where �πx(0) is an N × 1 vector with the x-th element equal
to 1 and others to 0, and T is the matrix transposition.
The initial resource is usually assigned according to the
importance of nodes [28]. Here, we simply set the initial
resource of node x proportional to its degree kx. Then,
after normalization the similarity between node x and
node y is

sLRWxy (t) =
kx

2|E| ·πxy(t)+
ky

2|E| ·πyx(t), (2)

where |E| is the number of links in the network. It is
obvious that sxy = syx. Note that here we only focus on

the few-step random walk instead of the stationary state
that can be characterized by the eigenvector centrality
[29,30]. In the stationary state, we have πxy =

ky
2|E| , and

thus according to eq. (2), sxy =
kx·ky
2|E|2 , which is equivalent

to the preferential attachment index (i.e., kx · ky) that has
been discussed in ref. [22].
One difficulty with all random-walk–based similarity

measures is their sensitive dependence to parts of the
network far away from target nodes [2]. For example, in
a random walk from x to y, the walker has a certain
probability to go too far away from both x and y although
they may be close to each other. This may lead to a
low prediction accuracy since many real-world networks
have high clustering coefficients, which tend to cause
random walkers to circulate locally rather than escape to
other, more distant, parts of the network. A possible way
to counteract this dependence is to continuously release
the walkers at the starting point, resulting in a higher
similarity between the target node and the nodes nearby.
By superposing the contribution of each walker (walkers
move independently), we obtain the similarity index

sSRWxy (t) =
t∑

l=1

sLRWxy (l), (3)

where SRW is the abbreviation for superposed random
walk.

Metrics. – To test the algorithm’s accuracy, the
observed links, E, are randomly divided into two parts:
the training set, ET , and the probe set, EP . Clearly,
E =ET ∪EP and ET ∩EP = ∅. We use two standard
metrics, AUC1 [33] and precision [34], to quantify the
accuracy of prediction algorithms. The former evaluates
the overall ranking resulted from the algorithm, while
the later focuses on the top-L candidates. In the present
case, AUC can be interpreted as the probability that a
randomly chosen missing link (a link in EP ) is given a
higher score than a randomly chosen nonexistent link (a
link in U\E, where U denotes the universal set). In the
implementation, among n independent comparisons, if
there are n′ times the missing link having a higher score
and n′′ times being of the same score, we have

AUC=
n′+0.5n′′

n
. (4)

If all the scores are generated from an independent and
identical distribution, the AUC should be about 0.5.
Therefore, the degree to which the AUC exceeds 0.5
indicates how much better the algorithm performs than
pure chance. Precision is defined as the ratio of relevant

1Actually, AUC is formally equivalent to the Wilcoxon rank-sum
test [31] and Mann-Whitney U statistical test [32]. It is a non-
parametric test for assessing whether two independent samples of
observations come from the same distribution. Note that, a latent
assumption in AUC metric is the independence of the existence of
each link, which may be not the case in the real world.
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Table 1: Basic topological features of the giant components of the example networks. N and |E| are the total numbers of nodes
and links, respectively. 〈k〉 is the average degree of the network. 〈d〉 is the average shortest distance between node pairs. C and r
are the clustering coefficient [35] and assortative coefficient [36], respectively. H is the degree heterogeneity, defined as H = 〈k2〉

〈k〉2 .

Networks N |E| 〈k〉 〈d〉 C r H

USAir 332 2126 12.807 2.46 0.749 −0.208 3.464
NetScience 379 941 4.823 4.93 0.798 −0.082 1.663
Power 4941 6594 2.669 15.87 0.107 0.003 1.450
Yeast 2375 11693 9.847 4.59 0.388 0.454 3.476
C. elegans 297 2148 14.456 2.46 0.308 −0.163 1.801

items to the number of selected items. In our case, to
calculate precision we need to rank all the nonexistent
links in decreasing order according to their scores. Then
we focus on the top-L (here L= 100) links. If there are l
links successfully predicted (i.e., in the probe set), then

Precision =
l

L
. (5)

Clearly, a higher value of precision means a higher predic-
tion accuracy.

Data. – We consider five representative networks
drawn from disparate fields: i) USAir: The network of
the US air transportation system, which contains 332
airports and 2126 airlines. ii) NetScience: A network
of coauthorships between scientists who are themselves
publishing on the topic of network science [37]. This
network contains 1589 scientists, 128 of which are
isolated. In fact, it consists 268 components, and the size
of the giant component is only 379. iii) Power Grid: An
electrical power grid of the western US [35], with nodes
representing generators, transformers and substations,
and edges corresponding to the high-voltage transmis-
sion lines between them. iv) Yeast: A protein-protein
interaction network of yeast containing 2617 proteins
and 11855 interactions [38]. Although this network is not
well connected (it contains 92 components), most of the
nodes belong to the giant component, whose size is 2375.
v) C. elegans: The neural network of the nematode worm
C. elegans, in which an edge joins two neurons if they are
connected by either a synapse or a gap junction [35].
In this letter, we only consider the giant component,

because the similarity indices based on local random walk,
as well as those well-known indices (except the preferential
attachment index) reported in refs. [2,22], will give zero
score to a pair of nodes located in two disconnected
components. This implies that if a network is unconnected,
we actually predict the links in each component separately,
and any probe link connecting two components cannot
be predicted. Therefore we need to make sure that the
training set represents a connected network. Actually, each
time before moving a link to the probe set, we first check if
this removal will make the training network disconnected.
Table 1 summarizes the basic topological features of the
giant components of those networks.

Results and discussion. – We compare the LRW
index and SRW index with other five similarity indices,
including three local ones: Common Neighbour (CN),
Resource Allocation index (RA) and Local Path index
(LP), and two global ones: Average Commute Time
(ACT), Random Walk with Restart (RWR), as well
as the Hierarchical Structure method (HSM). A brief
introduction of each algorithm is shown as follow:

i) CN: For a node x, let Γ(x) denote the set of neigh-
bours of x. By common sense, two nodes, x and y, are
more likely to have a link if they have more common
neighbours. The simplest measure of this neighbour-
hood overlap is the directed count, namely

sCNxy = |Γ(x)∩Γ(y)|. (6)

Actually, CN is a kind of localized version of the Katz
index which directly sums over the collection of all
paths and exponentially damped by length to give
the short paths more weights.

ii) RA: Consider a pair of nodes, x and y, which
are not directly connected. The node x can send
some resource to y, with their common neighbours
playing the role of transmitters. Assuming that each
transmitter has a unit of resource and will equally
distribute to all its neighbours, the similarity between
x and y, defined as the amount of resource y received
from x, is [22]

sRAxy =
∑

z∈Γ(x)∩Γ(y)

1

kz
. (7)

Clearly, this measure is symmetric, namely sxy = syx.
Note that this index is equivalent to the two-step
LRW, where

πxy(t= 2) =
∑

z∈Γ(x)∩Γ(y)

1

kx · kz . (8)

Former analysis showed that RA performs best among
all the common-neighbour-based indices in the USAir
network, NetScience network, Power Grid network,
Yeast network and Router network of the Inter-
net [22].
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Table 2: Comparison of algorithms’ accuracy quantified by AUC and Precision. For each network, the training set contains 90%
of the known links. Each number is obtained by averaging over 1000 implementations with independently random divisions of
training set and probe set. We set the parameters ε= 10−3 in LP and c= 0.9 in RWR. The numbers inside the brackets denote
the optimal step of LRW and SRW indices. For example, 0.972(2) means the optimal AUC is obtained at the second step of
LRW. The highest accuracy in each line is emphasized by boldface. For HSM we generate 5000 samples of dendrograms for each
implementation.

AUC CN RA LP ACT RWR HSM LRW SRW

USAir 0.954 0.972 0.952 0.901 0.977 0.904 0.972(2) 0.978(3)
NetScience 0.978 0.983 0.986 0.934 0.993 0.930 0.989(4) 0.992(3)
Power 0.626 0.626 0.697 0.895 0.760 0.503 0.953(16) 0.963(16)
Yeast 0.915 0.916 0.970 0.900 0.978 0.672 0.974(7) 0.980(8)
C. elegans 0.849 0.871 0.867 0.747 0.889 0.808 0.899(3) 0.906(3)

Precision CN RA LP ACT RWR HSM LRW SRW

USAir 0.59 0.64 0.61 0.49 0.65 0.28 0.64(3) 0.67(3)
NetScience 0.26 0.54 0.30 0.19 0.55 0.25 0.54(2) 0.54(2)
Power 0.11 0.08 0.13 0.08 0.09 0.00 0.08(2) 0.11(3)
Yeast 0.67 0.49 0.68 0.57 0.52 0.84 0.86(3) 0.73(9)
C. elegans 0.12 0.13 0.14 0.07 0.13 0.08 0.14(3) 0.14(3)

iii) LP: This index takes consideration of local paths,
with wider horizon than CN. It is defined as [23]

SLP =A2+ εA3, (9)

where S denotes the similarity matrix, A is the adja-
cency matrix and ε is a free parameter. Clearly,
this measure degenerates to CN when ε= 0. Refer-
ences [22,23] show that LP is a good trade-off between
effectiveness and efficiency.

iv) ACT: Denote by m(x, y) the average number of steps
required by a random walker starting from node x
to reach node y, the average commute time between
x and y is n(x, y) =m(x, y)+m(y, x), which can
be computed in terms of the Pseudoinverse of the
Laplacian matrix L+ (see footnote 2), as [39]

n(x, y) = |E| · (l+xx+ l+yy − 2l+xy), (10)

where l+xy denotes the corresponding entry in L
+.

Assume that two nodes are considered to be more
similar if they have a smaller average commute time,
then the similarity between the nodes x and y can
be defined as the reciprocal of n(x, y), namely (the
constant factor |E| is removed)

sACTxy =
1

l+xx+ l
+
yy − 2l+xy . (11)

v) RWR: This index is a direct application of the PageR-
ank algorithm [19]. Considering a random walker
starting from node x, who will iteratively move to
a random neighbour with probability c and return to
node x with probability 1− c, and denoting by qxy

2L=D−A, where D is the degree matrix with Dij = δijki.

the probability this walker locates at node y in the
steady state, then we have

�qx = cP
T �qx+(1− c) �ex, (12)

where �ex is an N × 1 vector with the x-th element
equal to 1 and others to 0. The solution is straight-
forward, as

�qx = (1− c)(I − cPT )−1 �ex. (13)

Accordingly, the RWR index is defined as

sRWRxy = qxy + qyx. (14)

vi) HSM: The hierarchical structure of a network can
be represented by a dendrogram with N leaves and
N − 1 internal nodes. Each internal node r is associ-
ated with a probability pr and the connecting prob-
ability of a pair of nodes is equal to pm where m
is the lowest common ancestor of these two nodes.
To predict missing links with this method we first
sample a large number of dendrograms with probabil-
ity proportional to their likelihood. And then calcu-
late the mean connecting probability 〈pij〉 by averag-
ing the corresponding probability pij over all sampled
dendrograms. A higher 〈pij〉 indicates a higher prob-
ability that nodes i and j are connected [1].

The results of these eight methods on five real networks
are shown in table 2. For each network, the training set
contains 90% of the known links. Generally speaking, the
global indices perform better than the local ones. And
our proposed indices, LRW and SRW, can give overall
better predictions than the other methods for both AUC
and precision. Compared with LRW index, the SRW index
can lead to an even higher accuracy. The dependence of
accuracy on the proportion of training set, labeled by p,
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Fig. 1: (Color online) Dependence of AUC and Precision on the size of training set, denoted by p, in USAir and C. elegans.
Each number is obtained by averaging over 1000 implementations with independently random divisions of the training set and
probe set. For HSM we generate 5000 samples of dendrograms for each implementation.

in USAir network and C. elegans network3 is shown in
fig. 1. The results indicate that the advantages of LRW
index and SRW index are not sensitive to the density of
the network.
Interestingly, when predicting by the LRW index, as

shown in fig. 2, we find a positive correlation between
the optimal step and the average shortest distance. For
example, 〈d〉 of USAir and C. elegans are very small, no
more than 3, their optimal steps are also small: 2 and
3, respectively, in the case of p= 0.9. However, in the
power grid with 〈d〉 ≈ 16, its AUC keeps increasing at
the beginning and reaches a near optimum at step 16,
where one more step leads to only 0.2% improvement. We
also find that with the decreasing of p, the optimal step
increases. This is because the removal of links to the probe
set will increase 〈d〉, as shown in the insets of fig. 2. This
result provides a possible way to choose the walking step,
as a free parameter, before predicting.
Besides high accuracy, the low computation complexity

is another important concern in the design of algorithms.
Generally speaking, the global indices have a higher
complexity than the local indices. As we known, the time
complexity in calculating the inverse or pseudoinverse of

3In order to ensure the training set is connected, the edges should
be no less than N − 1. Therefore, only USAir and C. elegans can be
successfully divided to a connected training set containing only 20%
of the known links. This is also the reason why fig. 1 only shows
these two networks.

an N ×N matrix is O(N3), while the time complexity
of n-step LRW (or SRW) is approximately O(N〈k〉n).
Since in most networks 〈k〉 is much smaller than N , LRW
and SRW run much faster than ACT and RWR. This
advantage is prominent especially in the huge-size (i.e.
largeN) and sparse (i.e. small 〈k〉) networks. For example,
LRW for power grid is thousands of times faster than
ACT, even when n= 10. In HSM, the process to sample a
dendrogram asks for O(N2) steps of the Markov chain [1],
and in the worse case, it takes exponential time [40].
Each step consumes a certain time to do some random
selections. In addition, to predict the missing links, a
large number of dendrograms are acquired. In this letter,
we sample 5000 dendrograms for each implementation.
Therefore, the time complexity of HSM is relatively high.
It can handle networks with up to a few thousand nodes
in a reasonable time, while LRW and SRW are able to
handle networks with tens of thousands of nodes. Note
that, although ACT, RWR and HSM have a higher time
complexity, they provide much more information beyond
link prediction. For example, the HSM algorithm can
be used to uncover the hierarchical organization of real
networks.

Conclusion. – In this letter, we proposed two similar-
ity indices for link prediction based on local random walk.
We compared our methods with six well-known methods
on five real networks. The results show that our methods
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Fig. 2: (Color online) A positive correlation between the
average shortest distance, 〈d〉, and the optimal step of the LRW
method. The eight points from left to right correspond to the
cases with p from 90% to 20%, respectively. The insets show
the dependence of 〈d〉 on the size of the training set.

can give remarkably better prediction than the three local
similarity indices. When comparing with the three global
methods, ours can give slightly better prediction with a
lower computational complexity.
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