330 research outputs found

    Ordinal Multi-modal Feature Selection for Survival Analysis of Early-Stage Renal Cancer

    Get PDF
    Existing studies have demonstrated that combining genomic data and histopathological images can better stratify cancer patients with distinct prognosis than using single biomarker, for different biomarkers may provide complementary information. However, these multi-modal data, most high-dimensional, may contain redundant features that will deteriorate the performance of the prognosis model, and therefore it has become a challenging problem to select the informative features for survival analysis from the redundant and heterogeneous feature groups. Existing feature selection methods assume that the survival information of one patient is independent to another, and thus miss the ordinal relationship among the survival time of different patients. To solve this issue, we make use of the important ordinal survival information among different patients and propose an ordinal sparse canonical correlation analysis (i.e., OSCCA) framework to simultaneously identify important image features and eigengenes for survival analysis. Specifically, we formulate our framework basing on sparse canonical correlation analysis model, which aims at finding the best linear projections so that the highest correlation between the selected image features and eigengenes can be achieved. In addition, we also add constrains to ensure that the ordinal survival information of different patients is preserved after projection. We evaluate the effectiveness of our method on an early-stage renal cell carcinoma dataset. Experimental results demonstrate that the selected features correlated strongly with survival, by which we can achieve better patient stratification than the comparing methods

    Spike-Train Responses of a Pair of Hodgkin-Huxley Neurons with Time-Delayed Couplings

    Full text link
    Model calculations have been performed on the spike-train response of a pair of Hodgkin-Huxley (HH) neurons coupled by recurrent excitatory-excitatory couplings with time delay. The coupled, excitable HH neurons are assumed to receive the two kinds of spike-train inputs: the transient input consisting of MM impulses for the finite duration (MM: integer) and the sequential input with the constant interspike interval (ISI). The distribution of the output ISI ToT_{\rm o} shows a rich of variety depending on the coupling strength and the time delay. The comparison is made between the dependence of the output ISI for the transient inputs and that for the sequential inputs.Comment: 19 pages, 4 figure

    An associative memory of Hodgkin-Huxley neuron networks with Willshaw-type synaptic couplings

    Full text link
    An associative memory has been discussed of neural networks consisting of spiking N (=100) Hodgkin-Huxley (HH) neurons with time-delayed couplings, which memorize P patterns in their synaptic weights. In addition to excitatory synapses whose strengths are modified after the Willshaw-type learning rule with the 0/1 code for quiescent/active states, the network includes uniform inhibitory synapses which are introduced to reduce cross-talk noises. Our simulations of the HH neuron network for the noise-free state have shown to yield a fairly good performance with the storage capacity of αc=Pmax/N0.42.4\alpha_c = P_{\rm max}/N \sim 0.4 - 2.4 for the low neuron activity of f0.040.10f \sim 0.04-0.10. This storage capacity of our temporal-code network is comparable to that of the rate-code model with the Willshaw-type synapses. Our HH neuron network is realized not to be vulnerable to the distribution of time delays in couplings. The variability of interspace interval (ISI) of output spike trains in the process of retrieving stored patterns is also discussed.Comment: 15 pages, 3 figures, changed Titl

    Optogenetic Stimulation of 5-HT Neurons in the Median Raphe Nucleus Affects Anxiety and Respiration

    Get PDF
    Anxiety affects respiration, and in turn perturbs the internal environment, although the neuronal systems controlling anxiety-related respiration remain unclear. Recent reports indicate that serotonin(5-HT)neurons in the median raphe nucleus(MRN)enhance anxiety. In the present study, we aimed to clarify the contribution of 5-HT neurons in the MRN to anxiety and respiratory control using mice expressing a channelrhodopsin-2 variant-enhanced yellow fluorescent protein(ChR2 [C128S]-EYFP; a step-function opsin)in the central 5-HT neurons. We applied an optogenetic method to bigenic mice expressing ChR2[C128S]-EYFP in 5-HT neurons and to monogenic mice without such expression. Photostimulation of free-moving mice was performed using a wireless system through an optical fiber pre-inserted above the MRN, and respiratory variables were measured using whole-body plethysmography. Anxiety was evaluated using an elevated-plus maze test. In the bigenic mice, we confirmed ChR2[C128S]-EYFP expression in tryptophan hydroxylase 2(a brain 5-HT synthase)-positive neurons in the raphe nuclei of the mesopontine, such as the MRN and the dorsal raphe nucleus. Blue light illumination to the MRN of the bigenic mice significantly increased respiratory rate and minute ventilation without affecting tidal volume, and significantly decreased the time spent in the open arms of the elevated plus maze without changing distance traveled, compared with monogenic mice. These results suggest that 5-HT neuron activity in the MRN increases anxiety-like behavior without affecting locomotor activity, enhances respiratory rhythm and minute ventilation without changing tidal volume, and can mimic anxiety-related respiratory responses in humans

    Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors

    Full text link
    We have constructed a GEANT4-based detailed software model of photon transport in plastic scintillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutrinoless double beta decay. We compare our simulations to measurements using conversion electrons from a calibration source of 207Bi\rm ^{207}Bi and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account. In this article, we briefly describe our modeling approach and results of our studies.Comment: 16 pages, 10 figure

    Stochastic Resonance of Ensemble Neurons for Transient Spike Trains: A Wavelet Analysis

    Full text link
    By using the wavelet transformation (WT), we have analyzed the response of an ensemble of NN (=1, 10, 100 and 500) Hodgkin-Huxley (HH) neurons to {\it transient} MM-pulse spike trains (M=13M=1-3) with independent Gaussian noises. The cross-correlation between the input and output signals is expressed in terms of the WT expansion coefficients. The signal-to-noise ratio (SNR) is evaluated by using the {\it denoising} method within the WT, by which the noise contribution is extracted from output signals. Although the response of a single (N=1) neuron to sub-threshold transient signals with noises is quite unreliable, the transmission fidelity assessed by the cross-correlation and SNR is shown to be much improved by increasing the value of NN: a population of neurons play an indispensable role in the stochastic resonance (SR) for transient spike inputs. It is also shown that in a large-scale ensemble, the transmission fidelity for supra-threshold transient spikes is not significantly degraded by a weak noise which is responsible to SR for sub-threshold inputs.Comment: 20 pages, 4 figure

    GITR signaling potentiates airway hyperresponsiveness by enhancing Th2 cell activity in a mouse model of asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergic asthma is characterized by airway hyperresponsiveness (AHR) and allergic inflammation of the airways, driven by allergen-specific Th2 cells. The asthma phenotypes and especially AHR are sensitive to the presence and activity of regulatory T (Treg) cells in the lung. Glucocorticoid-induced tumor necrosis factor receptor (GITR) is known to have a co-stimulatory function on effector CD4<sup>+ </sup>T cells, rendering these cells insensitive to Treg suppression. However, the effects of GITR signaling on polarized Th1 and Th2 cell effector functions are not well-established. We sought to evaluate the effect of GITR signaling on fully differentiated Th1 and Th2 cells and to determine the effects of GITR activation at the time of allergen provocation on AHR and airway inflammation in a Th2-driven mouse model of asthma.</p> <p>Methods</p> <p>CD4<sup>+</sup>CD25<sup>- </sup>cells were polarized <it>in vitro </it>into Th1 and Th2 effector cells, and re-stimulated in the presence of GITR agonistic antibodies to assess the effect on IFNγ and IL-4 production. To evaluate the effects of GITR stimulation on AHR and allergic inflammation in a mouse asthma model, BALB/c mice were sensitized to OVA followed by airway challenges in the presence or absence of GITR agonist antibodies.</p> <p>Results</p> <p>GITR engagement potentiated cytokine release from CD3/CD28-stimulated Th2 but not Th1 cells <it>in vitro</it>. In the mouse asthma model, GITR triggering at the time of challenge induced enhanced airway hyperresponsiveness, serum IgE and <it>ex vivo </it>Th2 cytokine release, but did not increase BAL eosinophilia.</p> <p>Conclusion</p> <p>GITR exerts a differential effect on cytokine release of fully differentiated Th1 and Th2 cells <it>in vitro</it>, potentiating Th2 but not Th1 cytokine production. This effect on Th2 effector functions was also observed <it>in vivo </it>in our mouse model of asthma, resulting in enhanced AHR, serum IgE responses and Th2 cytokine production. This is the first report showing the effects of GITR activation on cytokine production by polarized primary Th1 and Th2 populations and the relevance of this pathway for AHR in mouse models for asthma. Our data provides crucial information on the mode of action of the GITR signaling, a pathway which is currently being considered for therapeutic intervention.</p

    Escherichia coli mediated urinary tract infections: Are there distinct uropathogenic E. coli (UPEC) pathotypes?

    Full text link
    A variety of virulence genes are associated with Escherichia coli mediated urinary tract infections. Particular sets of virulence factors shared by bacterial strains directing them through a particular pathogenesis process are called a “pathotype.” Comparison of co-occurrence of potential urinary tract infection (UTI) virulence genes among different E. coli isolates from fecal and UTI collections provides evidence for multiple pathotypes of uropathogenic E. coli , but current understanding of critical genetic differences defining the pathotypes is limited. Discovery of additional E. coli genes involved in uropathogenesis and determination of their distribution and co-occurrences will further define UPEC pathotypes and allow for a more detailed analysis of how these pathotypes might differ in how they cause disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72866/1/j.femsle.2005.08.028.pd
    corecore