311 research outputs found

    Linear approach to the orbiting spacecraft thermal problem

    Get PDF
    We develop a linear method for solving the nonlinear differential equations of a lumped-parameter thermal model of a spacecraft moving in a closed orbit. Our method, based on perturbation theory, is compared with heuristic linearizations of the same equations. The essential feature of the linear approach is that it provides a decomposition in thermal modes, like the decomposition of mechanical vibrations in normal modes. The stationary periodic solution of the linear equations can be alternately expressed as an explicit integral or as a Fourier series. We apply our method to a minimal thermal model of a satellite with ten isothermal parts (nodes) and we compare the method with direct numerical integration of the nonlinear equations. We briefly study the computational complexity of our method for general thermal models of orbiting spacecraft and conclude that it is certainly useful for reduced models and conceptual design but it can also be more efficient than the direct integration of the equations for large models. The results of the Fourier series computations for the ten-node satellite model show that the periodic solution at the second perturbative order is sufficiently accurate.Comment: 20 pages, 11 figures, accepted in Journal of Thermophysics and Heat Transfe

    The equation of state for two flavor QCD at N_t=6

    Full text link
    We calculate the two flavor equation of state for QCD on lattices with lattice spacing a=(6T)^{-1} and find that cutoff effects are substantially reduced compared to an earlier study using a=(4T)^{-1}. However, it is likely that significant cutoff effects remain. We fit the lattice data to expected forms of the free energy density for a second order phase transition at zero-quark-mass, which allows us to extrapolate the equation of state to m_q=0 and to extract the speed of sound. We find that the equation of state depends weakly on the quark mass for small quark mass.Comment: 24 pages, latex, 11 postscipt figure

    Deconfinement transition and string tensions in SU(4) Yang-Mills Theory

    Get PDF
    We present results from numerical lattice calculations of SU(4) Yang-Mills theory. This work has two goals: to determine the order of the finite temperature deconfinement transition on an Nt=6N_t = 6 lattice and to study the string tensions between static charges in the irreducible representations of SU(4). Motivated by Pisarski and Tytgat's argument that a second-order SU(\infty) deconfinement transition would explain some features of the SU(3) and QCD transitions, we confirm older results on a coarser, Nt=4N_t = 4, lattice. We see a clear two-phase coexistence signal, characteristic of a first-order transition, at 8/g2=10.798/g^2 = 10.79 on a 6×2036\times 20^3 lattice, on which we also compute a latent heat of Δϵ0.6ϵSB\Delta\epsilon\approx 0.6 \epsilon_{SB}. Computing Polyakov loop correlation functions we calculate the string tension at finite temperature in the confined phase between fundamental charges, σ1\sigma_1, between diquark charges, σ2\sigma_2, and between adjoint charges σ4\sigma_4. We find that 1<σ2/σ1<21 < \sigma_2/\sigma_1 < 2, and our result for the adjoint string tension σ4\sigma_4 is consistent with string breaking.Comment: 10 pages with included figures. For version 2: New calculation and discussion of latent heat added; 2 new figures and 1 new table. Typo in abstract corrected for v3. To appear in Physical Review

    S-matrix approach to quantum gases in the unitary limit II: the three-dimensional case

    Full text link
    A new analytic treatment of three-dimensional homogeneous Bose and Fermi gases in the unitary limit of negative infinite scattering length is presented, based on the S-matrix approach to statistical mechanics we recently developed. The unitary limit occurs at a fixed point of the renormalization group with dynamical exponent z=2 where the S-matrix equals -1. For fermions we find T_c /T_F is approximately 0.1. For bosons we present evidence that the gas does not collapse, but rather has a critical point that is a strongly interacting form of Bose-Einstein condensation. This bosonic critical point occurs at n lambda^3 approximately 1.3 where n is the density and lambda the thermal wavelength, which is lower than the ideal gas value of 2.61.Comment: 26 pages, 16 figure

    Phenomenological Equations of State for the Quark-Gluon Plasma

    Full text link
    Two phenomenological models describing an SU(N) quark-gluon plasma are presented. The first is obtained from high temperature expansions of the free energy of a massive gluon, while the second is derived by demanding color neutrality over a certain length scale. Each model has a single free parameter, exhibits behavior similar to lattice simulations over the range T_d - 5T_d, and has the correct blackbody behavior for large temperatures. The N = 2 deconfinement transition is second order in both models, while N = 3,4, and 5 are first order. Both models appear to have a smooth large-N limit. For N >= 4, it is shown that the trace of the Polyakov loop is insufficient to characterize the phase structure; the free energy is best described using the eigenvalues of the Polyakov loop. In both models, the confined phase is characterized by a mutual repulsion of Polyakov loop eigenvalues that makes the Polyakov loop expectation value zero. In the deconfined phase, the rotation of the eigenvalues in the complex plane towards 1 is responsible for the approach to the blackbody limit over the range T_d - 5T_d. The addition of massless quarks in SU(3) breaks Z(3) symmetry weakly and eliminates the deconfining phase transition. In contrast, a first-order phase transition persists with sufficiently heavy quarks.Comment: 22 pages, RevTeX, 9 eps file

    Cover to Volume 3

    Get PDF
    The fibroblast mitogen platelet-derived growth factor -BB (PDGF-BB) induces a transient expression of the orphan nuclear receptor NR4A1 (also named Nur77, TR3 or NGFIB). The aim of the present study was to investigate the pathways through which NR4A1 is induced by PDGF-BB and its functional role. We demonstrate that in PDGF-BB stimulated NIH3T3 cells, the MEK1/2 inhibitor CI-1040 strongly represses NR4A1 expression, whereas Erk5 downregulation delays the expression, but does not block it. Moreover, we report that treatment with the NF-κB inhibitor BAY11-7082 suppresses NR4A1 mRNA and protein expression. The majority of NR4A1 in NIH3T3 was found to be localized in the cytoplasm and only a fraction was translocated to the nucleus after continued PDGF-BB treatment. Silencing NR4A1 slightly increased the proliferation rate of NIH3T3 cells; however, it did not affect the chemotactic or survival abilities conferred by PDGF-BB. Moreover, overexpression of NR4A1 promoted anchorage-independent growth of NIH3T3 cells and the glioblastoma cell lines U-105MG and U-251MG. Thus, whereas NR4A1, induced by PDGF-BB, suppresses cell growth on a solid surface, it increases anchorage-independent growth

    HQET at order 1/m1/m: II. Spectroscopy in the quenched approximation

    Get PDF
    Using Heavy Quark Effective Theory with non-perturbatively determined parameters in a quenched lattice calculation, we evaluate the splittings between the ground state and the first two radially excited states of the BsB_s system at static order. We also determine the splitting between first excited and ground state, and between the BsB_s^* and BsB_s ground states to order 1/mb1/m_b. The Generalized Eigenvalue Problem and the use of all-to-all propagators are important ingredients of our approach.Comment: (1+18) pages, 3 figures (4 pdf files); pdflatex; v2: corrections to table 1, results unaffecte

    Finite-size and Particle-number Effects in an Ultracold Fermi Gas at Unitarity

    Full text link
    We investigate an ultracold Fermi gas at unitarity confined in a periodic box V=L3V=L^3 using renormalization group (RG) techniques. Within this approach we can quantitatively assess the long range bosonic order parameter fluctuations which dominate finite-size effects. We determine the finite-size and particle-number dependence of universal quantities, such as the Bertsch parameter and the fermion gap. Moreover, we analyze how these universal observables respond to the variation of an external pairing source. Our results indicate that the Bertsch parameter saturates rather quickly to its value in the thermodynamic limit as a function of increasing box size. On the other hand, we observe that the fermion gap shows a significantly stronger dependence on the box size, in particular for small values of the pairing source. Our results may contribute to a better understanding of finite-size and particle-number effects present in Monte-Carlo simulations of ultracold Fermi gases.Comment: 13 pages, 7 figure

    Confining strings in SU(N) gauge theories

    Get PDF
    We calculate the string tensions of kk-strings in SU(NN) gauge theories in both 3 and 4 dimensions. In D=3+1, we find that the ratio of the k=2k=2 string tension to the k=1k = 1 fundamental string tension is consistent, at the 2σ2 \sigma level, with both the M(-theory)QCD-inspired conjecture and with `Casimir scaling'. In D=2+1 we see a definite deviation from the MQCD formula, as well as a much smaller but still significant deviation from Casimir scaling. We find that in both D=2+1 and D=3+1 the high temperature spatial kk-string tensions also satisfy approximate Casimir scaling. We point out that approximate Casimir scaling arises naturally if the cross-section of the flux tube is nearly independent of the flux carried, and that this will occur in an effective dual superconducting description, if we are in the deep-London limit. We estimate, numerically, the intrinsic width of kk-strings in D=2+1 and indeed find little variation with kk. In addition to the stable kk-strings we investigate some ofthe unstable strings, finding in D=2+1 that they satisfy (approximate) Casimir scaling. We also investigate the basic assumption that confining flux tubes are described by an effective string theory at large distances. We estimate the coefficient of the universal L\"uscher correction from periodic strings that are longer than 1 fermi, and find cL=0.98(4)c_L=0.98(4) in D=3+1 and cL=0.558(19)c_L=0.558(19) in D=2+1. These values are within 2σ2 \sigma of the simple bosonic string values and are inconsistent with other simple effective string theories.Comment: 57 pages, 11 figures. Errors on fits reduced by altering the analysis to a standard one. Conclusions unchanged; note addedchanged. Some typos correcte

    Quenched Lattice QCD with Domain Wall Fermions and the Chiral Limit

    Get PDF
    Quenched QCD simulations on three volumes, 83×8^3 \times, 123×12^3 \times and 163×3216^3 \times 32 and three couplings, β=5.7\beta=5.7, 5.85 and 6.0 using domain wall fermions provide a consistent picture of quenched QCD. We demonstrate that the small induced effects of chiral symmetry breaking inherent in this formulation can be described by a residual mass (\mres) whose size decreases as the separation between the domain walls (LsL_s) is increased. However, at stronger couplings much larger values of LsL_s are required to achieve a given physical value of \mres. For β=6.0\beta=6.0 and Ls=16L_s=16, we find \mres/m_s=0.033(3), while for β=5.7\beta=5.7, and Ls=48L_s=48, \mres/m_s=0.074(5), where msm_s is the strange quark mass. These values are significantly smaller than those obtained from a more naive determination in our earlier studies. Important effects of topological near zero modes which should afflict an accurate quenched calculation are easily visible in both the chiral condensate and the pion propagator. These effects can be controlled by working at an appropriately large volume. A non-linear behavior of mπ2m_\pi^2 in the limit of small quark mass suggests the presence of additional infrared subtlety in the quenched approximation. Good scaling is seen both in masses and in fπf_\pi over our entire range, with inverse lattice spacing varying between 1 and 2 GeV.Comment: 91 pages, 34 figure
    corecore