
J
H
E
P
0
5
(
2
0
1
0
)
0
7
4

Published for SISSA by Springer

Received: April 15, 2010

Accepted: May 3, 2010

Published: May 20, 2010

HQET at order 1/m: II. Spectroscopy in the

quenched approximation

LPHAA
Collaboration
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1 Introduction

In recent years, there has been significant progress in determining the spectrum of hadrons
containing a b quark, both experimentally [1–5], and on the lattice [6–10]. A comparison
of theory and experiment is of considerable interest for these hydrogen-like systems, in
particular since Heavy Quark Effective Theory (HQET) [11–14] is applicable and is at the
same time an important theoretical tool to isolate new physics in the flavor sector [15].

The extraction of information on excited states from lattice simulations is a difficult
problem, since the excited states appear as subleading exponentially decaying contributions
to the lattice correlators, which at large times are dominated by the ground state and
at small times by the combined contributions of arbitrarily highly excited states, and
on top of this are affected by noise. A number of different methods [16–19] have been
proposed for overcoming this challenge; recently we have shown that with an efficient use
of the generalized eigenvalue problem (GEVP), rigorous statements about the systematic
error caused by the admixture of other states can be proven [20]. In particular, we have
shown that for a suitable choice of Euclidean times t and t0, the systematic error decays
exponentially with an exponent given by an energy gap that can be made large by an
appropriately chosen variational basis.
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Since their Compton wavelength is much shorter than any realistically achievable lat-
tice spacing, b quarks cannot be simulated as relativistic quarks on a lattice. A description
of heavy-light mesons that is suitable for use in the context of lattice QCD simulations
is given by HQET with non-perturbatively determined parameters [21, 22]. The param-
eters necessary to match HQET to QCD at order O(1/mb) have been determined in the
quenched approximation by our collaboration [23], and the non-perturbative determination
for QCD with Nf = 2 dynamical quark flavors is far advanced [24].

In this paper, we present our results for the heavy-light meson spectrum from HQET
using the GEVP method. In section 2, we give a brief review of our methods. Details
of the simulations and data analysis procedures are given in section 3, and our results
for the quenched heavy-light spectrum are presented. Section 4 contains our conclusions.
Some technical details of our implementation of all-to-all propagators are relegated to
the appendix.

2 Methodological background

2.1 Non-perturbative HQET

HQET on the lattice offers a theoretically rigorous approach to the physics of B-mesons
since it is based on a strict expansion of QCD correlation functions in powers of 1/mb

around the limit mb → ∞. Subleading effects are described by insertions of higher di-
mensional operators whose coupling constants are formally O(1/mb) to the appropriate
power. This means that HQET can be renormalized and matched to QCD in a completely
non-perturbative way [25], implying the existence of the continuum limit at any fixed order
in the 1/mb expansion.

To fix the notation we write the HQET action at O(1/mb) as

SHQET = a4
∑
x

{Lstat(x)− ωkinOkin(x)− ωspinOspin(x)} , (2.1)

Lstat(x) = ψh(x) (D0 + δm)ψh(x) , (2.2)

Okin(x) = ψh(x)D2ψh(x) , Ospin(x) = ψh(x)σ ·Bψh(x) , (2.3)

where ψh satisfies 1+γ0
2 ψh = ψh. The parameters ωkin and ωspin are of order 1/mb, and

δm is the counter-term absorbing the power-divergences of the static quark self energy.
The signal-to-noise ratio of large-distance correlation functions is significantly improved
by replacing the link U(x, 0) in the backward covariant derivative D0f(x) = [f(x)−
U †(x− a0̂, 0) f(x− a0̂)]/a, with a smeared link [26].

Exponentiating the action of eq. (2.1) would give (non-renormalizable) NRQCD [27];
in order to retain the renormalizability of the static theory, we treat the theory in a strict
expansion in 1/mb, where the O(1/mb) parts of the action appear as insertions in corre-
lation functions. For the expectation value of some operator O this means (ignoring the
possibility of explicit 1/mb operator corrections, which do not affect the energy levels [23])

〈O〉 = 〈O〉stat + ωkin a
4
∑
x

〈OOkin(x)〉stat + ωspin a
4
∑
x

〈OOspin(x)〉stat (2.4)
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where 〈O〉stat denotes the expectation value in the static approximation.
To fully specify HQET, the parameters δm, ωkin and ωspin must be determined by

matching to QCD. In order to retain the asymptotic convergence in 1/mb, this matching
must be done non-perturbatively, since for a perturbative matching at loop order l, the
O(g2l) truncation error of the static term is much larger than the power corrections to the
static limit:

εpert(l) ∝ ḡ2l (mb) ∝ [2b0 log(mb/ΛQCD)]−l �
mb→∞

ΛQCD

mb
. (2.5)

A fully non-perturbative determination of the parameters of HQET has been carried
out in [23]. Here we employ the same discretization of QCD and HQET and in particular the
determined values of ωkin and ωspin. For further details of the matching and discretization,
the reader is referred to [23].

2.2 The generalized eigenvalue problem

In this section, we recall the relevant contents of [20]. Starting from some fields Oi(x)
localised on a time slice and their momentum zero projection a3

∑
xOi(x) = Õi(x0), a

matrix of Euclidean space correlation functions,

Cij(t) = 〈Õi(t)Õ∗j (0)〉 =
∞∑
n=1

e−Entψniψ∗nj , i, j = 1, . . . , N (2.6)

ψni ≡ (ψn)i = 〈0|Ôi|n〉 En < En+1 ,

provides the basis for the GEVP

C(t) vn(t, t0) = λn(t, t0)C(t0) vn(t, t0) , n = 1, . . . , N , t > t0 . (2.7)

Effective energies for the n-th energy level are given by

Eeff
n (t, t0) = −∂t log λn(t, t0) ≡ −1

a
[log λn(t+ a, t0)− log λn(t, t0)] , (2.8)

where a is the lattice spacing. Provided that t0 > t/2, the effective energies converge to
the exact energy levels as [20]

Eeff
n (t, t0) = En + O(e−∆EN+1,n t) , ∆Em,n = Em − En. (2.9)

In HQET, all correlation functions

Cij(t) = Cstat
ij (t) + ωkinC

kin
ij (t) + ωspinC

spin
ij (t) + O(ω2) (2.10)

are computed in an expansion in a small parameter, ω ∝ 1/mb. Correspondingly, the
energy levels expand as

Eeff
n (t, t0) = Eeff,stat

n (t, t0) + ωxE
eff,x
n (t, t0) + O(ω2) (2.11)

Eeff,stat
n (t, t0) = a−1 log

λstat
n (t, t0)

λstat
n (t+ a, t0)

(2.12)

Eeff,x
n (t, t0) =

λx
n(t, t0)

λstat
n (t, t0)

− λx
n(t+ a, t0)

λstat
n (t+ a, t0)

(2.13)
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where x ∈ {kin, spin}, with the behavior at large time t ≤ 2t0,

Eeff,stat
n (t, t0) = Estat

n + βstat
n e−∆Estat

N+1,n t + . . . , (2.14)

Eeff,x
n (t, t0) = Ex

n + [βx
n − βstat

n t∆Ex
N+1,n ]e−∆Estat

N+1,n t + . . . . (2.15)

where

Cstat(t) vstat
n (t, t0) = λstat

n (t, t0)Cstat(t0) vstat
n (t, t0) , (2.16)

λx
n(t, t0)

λstat
n (t, t0)

=
(
vstat
n (t, t0) , [[λstat

n (t, t0)]−1Cx(t)− Cx(t0)]vstat
n (t, t0)

)
.

with (vstat
m (t, t0) , Cstat(t0) vstat

n (t, t0)) = δmn. We note that the GEVP is only ever solved
for the static correlator matrices.

2.3 Mass splittings to O(1/mb)

With the static Lagrangian eq. (2.2), all HQET energies satisfy exactly En = En|δm=0 +
1
a log(1 +aδm), and the power divergent δm drops out in energy differences. Since we only
consider these in this paper, we need just ωkin and ωspin of [23].

The excitation energies at the static order of HQET are given simply by the differences
of the static energies,

∆Estat
n,1 = Estat

n − Estat
1 , (2.17)

and at order 1/mb, the excitation energies of pseudoscalar Bs states become

∆EHQET
n,1 = (Estat

n − Estat
1 ) + ωkin(Ekin

n − Ekin
1 ) + ωspin(Espin

n − Espin
1 ) . (2.18)

At the static order, the masses of pseudoscalar and vector states are degenerate due
to spin symmetry [13]. This degeneracy is lifted at the O(1/mb) level by the contribution
from Ospin, giving a Bs − B∗s mass difference of

∆EP−V =
4
3
ωspinE

spin
1 . (2.19)

3 Simulation details and results

3.1 Lattice parameters

We use three quenched ensembles of 100 configurations each, generated using the Wilson
gauge action with parameters β = 6.0219, 6.2885 and 6.4956. The physical volume was
kept constant at L ≈ 1.5 fm, leading to L/a = 16, 24, 32 for the three ensembles. We used
time extent T = 2L throughout.

The static quark is discretized on each ensemble with both the HYP1 and HYP2 [26, 28,
29] actions. The light valence quark is discretized by a non-perturbatively O(a)-improved
Wilson action [30, 31], and its mass was fixed to the strange quark mass, giving κs =
0.133849, 0.1349798, 0.1350299, respectively [32]. A summary of the simulation parameters
used, with the corresponding values of ωkin and ωspin, is given in table 1.
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β r0/a (L/a)3 × T/a κs NL Nη ωkin/a ωspin/a

6.0219 5.57 163 × 32 0.133849 50 2 0.321(7) 0.54(3)

6.2885 8.38 243 × 48 0.1349798 50 2 0.425(10) 0.70(4)

6.4956 11.03 323 × 64 0.1350299 0 4 0.534(13) 0.86(4)

Table 1. Parameters of the simulations: inverse coupling β, approximate value of the scale param-
eter r0 [33] in lattice units, spacetime volume, hopping parameter for the strange quark mass [32],
number of low-lying eigenmodes and number of noise sources used in the all-to-all [34] estimate of
the strange quark propagators, and approximate values of the HQET couplings ωkin and ωspin in
lattice units.

3.2 Measurements of correlation functions

The strange quark propagators are computed through a variant of the Dublin all-to-all
method [34]. We use approximate instead of exact low modes (the method remains exact)
and employ even-odd preconditioning in order to reduce the size of the stochastically esti-
mated inverse of the Dirac operator by a factor of 2. The reader is referred to appendix A
for details.

The interpolating fields are constructed using quark bilinears

Ok(x) = ψh(x)γ0γ5ψ
(k)
l (x) (3.1)

O∗k(x) = ψ
(k)
l (x)γ0γ5ψh(x)

built from the static quark field ψh(x) and different levels of Gaussian smearing [35] for
the light quark field

ψ
(k)
l (x) =

(
1 + κG a

2 ∆
)Rk ψl(x) , (3.2)

where the gauge fields in the covariant Laplacian ∆ are first smeared with 3 iterations of
(spatial) APE smearing [36, 37] to reduce noise. At β = 6.2885, we use Rk = 0, 22, 45,
67, 90, 135, 180, 225 with κG = 0.1. At the other values of β, we rescale the values of
Rk used so that the physical size rphys,k ≈ 2a

√
κGRk of the wavefunctions is kept fixed; in

particular we keep rmax = rphys,7 ≈ 0.6 fm.
For these bilinears, we compute the following correlators:

Cstat
ij (t) =

∑
x,y

〈
Oi(x0 + t,y)O∗j (x)

〉
stat

,

(3.3)
C

kin/spin
ij (t) =

∑
x,y,z

〈
Oi(x0 + t,y)O∗j (x)Okin/spin(z)

〉
stat

with the O(1/mb) fields defined in eq. (2.3).

3.3 Determination of energies

The correlator matrices of eq. (3.3) are “thinned” to form a sequence of N ×N matrices,
where N ∈ {2, . . . , 7}, by selecting only entries from a certain subset IN of indices where
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n 2 3 4 5 6
r0(Estat

n − Estat
1 ) 1.50(5) 2.7(1) 4.0 5.0 6.0

Table 2. Rough estimate of the static spectrum. For n ≤ 3, the gaps come from the continuum
limit; for n ≥ 4, the rough estimate used to stabilize the fit is quoted.

IN = {1, 7}, {1, 4, 7}, {1, 3, 5, 7}, {1, 2, 4, 6, 7}, {1, 2, 3, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 7}. An al-
ternative procedure, used in [20] is “pruning” [38], where the N ×N matrices are formed
by projection onto the subspaces spanned by the lowest N eigenvectors of C(ti) for some
small ti. We decided not to use this version since it introduces a dependence on the relative
normalization of the fields Oi. Moreover, with thinning we found a somewhat faster con-
vergence to the plateau for the ground state energy compared to the pruning version [39]
when the normalization of Oi in [20] is used. We note that the fact that we found the
same low-lying energy levels with thinning as with pruning is a further confirmation that
the GEVP is quite robust against changes of the variational basis employed.

For each of the resulting N × N correlator matrices, we solve the static GEVP and
compute the static and O(1/mb) energies. This gives a series of estimates Eeff,stat

n (N, t, t0),
Eeff,kin
n (N, t, t0) and Eeff,spin

n (N, t, t0) with associated statistical errors, which we determine
by a full Jackknife analysis.

To arrive at final numbers for En we also need to estimate the size of the systematic
errors coming from the higher excited states. To do this, we first perform a fit of the form

Eeff,stat
n (N, t, t0) = Estat

n + εN,stat
n (t) (3.4)

= Estat
n + βstat

n,Ne−(Estat
N+1−E

stat
n )t

to the GEVP results for Eeff,stat
n (N, t, t0), fitting the data at N = 3, . . . , 5, 1

2r0 < t0 ≤ 6a,
t0 ≤ t ≤ 2t0 and n = 1, . . . , 6 simultaneously. The stability of the fit is enhanced in the
following manner: First we perform an unconstrained fit to extract Estat

n − Estat
1 for n =

4, 5, 6 for each lattice spacing and action and compute a rough average of r0(Estat
n −Estat

1 )
for these values of n. Then we repeat the fit, constraining r0(Estat

n − Estat
1 ) for n ≥ 4 to

the previous average (this renders the fit linear). For n ≤ 3 this is unnecessary as these
levels are well determined at each individual lattice spacing. We list the extracted values
of r0(Estat

n − Estat
1 ) in table 2.

Finally, using the values of Estat
n and βstat

n,N determined from this fit as (fixed) input
parameters, we fit Eeff,kin

n (N, t, t0) and Eeff,spin
n (N, t, t0) by

Eeff,kin
n (N, t, t0) = Ekin

n + εN,kin
n (t) (3.5)

= Ekin
n +

[
βkin
n,N − βstat

n,N t (Ekin
N+1 − Ekin

n )
]

e−(Estat
N+1−E

stat
n )t

Eeff,spin
n (N, t, t0) = Espin

n + εN,spin
n (t) (3.6)

= Espin
n +

[
βspin
n,N − β

stat
n,N t (Espin

N+1 − E
spin
n )

]
e−(Estat

N+1−E
stat
n )t

in the same manner.
While the fitted results are quite stable, we consider them as rough estimates only,

since our fits include only the leading exponential correction, and there are systematic
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Figure 1. Illustration of some plateaux. Left: ENstat
2 (bottom half) and ENstat

3 (upper half). Here
N = 5 and within each group the lattice spacing is decreasing from top to bottom. Dotted lines
represent the global fit, while dashed lines indicate the chosen plateau. Right: the ground state
spin splitting. The ordinates of the points are shifted by an arbitrary β-dependent offset in order
to make the different plateaux visible separately.

effects from higher corrections to the GEVP. We therefore employ the fits only to estimate
the size of the leading corrections. For a reliable estimate of the energy levels, we calculate
plateau averages from t = tmin ≥ t0 on at each N and t0, and take as our final estimate
that plateau average for which the sum σtot = σstat + σsys of the statistical error σstat of
the plateau average and the maximum systematic error σsys = ε(tmin) becomes minimal,
subject to the constraint that σsys <

1
3σstat. We impose the latter constraint in order to

ensure that the total error is dominated by statistical errors.

An illustration of the more problematic plateaux is shown in figure 1. It is rather clear
that without some analysis of corrections due to excited states it is very difficult to locate
a safe plateau region at least for n = 3.

Our results are given in table 3; besides the plateaux found by the method described
in the preceding paragraph, we also show the results of the global fit, which in almost all
cases agrees very well with the final plateau value.

3.4 Continuum limit

We now turn to the continuum extrapolation of the level splittings. Using the fact that
the static actions employed are discretizations of the same continuum theory, we perform
a combined continuum limit by fitting a function of the form (k = 1, 2 for HYP1, HYP2
actions)

Φi,k(a/r0) = Φi + ci,k(a/r0)si (3.7)

– 7 –
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HYP1 HYP2
β Observable Fit Plateau Fit Plateau
6.0219 aEstat

1 0.4407(2) 0.441(1) 0.4081(2) 0.409(1)
aEstat

2 0.708(2) 0.711(5) 0.678(2) 0.680(6)
aEstat

3 0.893(5) 0.92(2) 0.868(5) 0.89(2)
a2Ekin

1 0.743(1) 0.740(2) 0.774(1) 0.771(2)
a2Ekin

2 0.843(8) 0.85(1) 0.859(7) 0.88(1)
a2Espin

1 -0.0300(5) -0.0293(7) -0.0285(4) -0.0279(8)
a2Espin

2 -0.026(2) -0.029(3) -0.023(2) -0.025(2)
6.2885 aEstat

1 0.3319(2) 0.3328(7) 0.3032(2) 0.3041(7)
aEstat

2 0.507(1) 0.515(4) 0.478(1) 0.485(4)
aEstat

3 0.648(3) 0.67(1) 0.614(3) 0.625(7)
a2Ekin

1 0.6479(5) 0.6481(4) 0.6743(4) 0.6745(3)
a2Ekin

2 0.682(4) 0.68(1) 0.704(4) 0.70(1)
a2Espin

1 -0.0127(1) -0.0126(2) -0.0129(1) -0.0130(3)
a2Espin

2 -0.0115(9) -0.011(1) -0.011(1) -0.012(1)
6.4956 aEstat

1 0.2742(3) 0.275(1) 0.2482(3) 0.249(1)
aEstat

2 0.409(2) 0.405(8) 0.384(2) 0.381(8)
aEstat

3 0.518(3) 0.52(2) 0.491(3) 0.50(2)
a2Ekin

1 0.5999(5) 0.5997(3) 0.6240(3) 0.6229(7)
a2Ekin

2 0.620(3) 0.625(6) 0.645(2) 0.645(4)
a2Espin

1 -0.0081(1) -0.0079(5) -0.0076(1) -0.0074(4)
a2Espin

2 -0.0108(9) -0.005(4) -0.0098(8) -0.007(2)

Table 3. The measured values of the HQET energies in lattice units. Shown are both the values
obtained from a global fit (“Fit”) and from our more conservative plateau selection (“Plateau”) as
described in the text, for both the HYP1 and HYP2 discretization of the heavy quark.

to our dimensionless quantitites Φi ∈ {r0∆Estat
2,1 , r0∆Estat

3,1 , r0∆EP−V, r0∆EHQET
2,1 }. Since

O(a)-improvement is fully implemented in the static approximation, we use powers s1 =
s2 = 2. On the other hand, the 1/mb corrections have O(a) discretization errors, yielding
s3 = 1 for the observable ∆EP−V. For ∆EHQET

n,1 , there are two possible ways of taking the
continuum limit. First we extrapolate ∆Estat

n,1 and the O(1/mb) contribution separately to
a → 0 and add the continuum limits afterwards. Here we set sstat

4 = 2 for the static part
and s

1/m
4 = 1 for the O(1/mb) correction. Second, one can form the combined ∆EHQET

n,1

at each β and take the continuum limit of the combination. The linear term in a which
is present in the combined data, is suppressed by a factor 1/mb. Given in addition the
flatness of the data in a (see figure 2) we just use s4 = 2 for the combination, assuming
that this term dominates.

Figure 2 shows the approach to the continuum limit for the static and full HQET energy
splittings. The results for HYP1 and HYP2 are distinguished by color; the static splittings
are shown as circles, whereas the full HQET splitting ∆EHQET

2,1 is shown as diamonds. Also
shown are the fits to the continuum limit together with their error bands. We see that
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β = 6.0219 β = 6.2885 β = 6.4956 cont. limit

r0∆Estat
2,1 HYP1 1.50(3) 1.52(9) 1.46(8) 1.50(5)

HYP2 1.51(3) 1.51(3) 1.47(8)

r0∆Estat
3,1 HYP1 2.67(10) 2.78(9) 2.7(2) 2.7(1)

HYP2 2.72(10) 2.68(6) 2.8(2)

r0∆E1/m
2,1 HYP1 0.20(2) 0.14(4) 0.17(5) 0.03(6)

HYP2 0.21(2) 0.08(4) 0.13(3)

r0∆EHQET
2,1

HYP1 1.70(4) 1.66(6) 1.63(10) 1.56(8)

HYP2 1.72(4) 1.59(6) 1.59(9)

r0∆Estat
2,1

∣∣
continuum

+ r0∆E1/m
2,1

∣∣
continuum

1.54(9)

r0∆EP−V HYP1 -0.093(7) -0.083(6) -0.089(8) -0.075(8)

HYP2 -0.114(9) -0.103(8) -0.092(7)

Table 4. The energy level differences in units of the scale r0. Shown are the results at each β for
both static-quark actions, together with their common continuum limit.

Figure 2. Plot of the continuum limits (stars) of ∆Estat
n,1 (circles) and ∆EHQET

2,1 (diamonds). Shown
are the results for both HYP1 (red, shifted to the left) and HYP2 (blue, shifted to the right).

the approach to the continuum limit is rather flat in particular for ∆E2,1, and that the
O(1/mb) corrections constitute only a small shift of the energy splitting between the first
excited and ground states. In figure 3 we show the approach to the continuum limit for
the spin splitting ∆EP−V in the same fashion.
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Figure 3. Plot of the continuum limit (star) of ∆EP−V for HYP1 (red, shifted to the left) and
HYP2 (blue, shifted to the right).

3.5 Results

Our findings for the continuum values of the level splittings are summarized in table 4.
For the static spectrum, we obtain

r0∆Estat
2,1 = 1.50(5) (3.8)

r0∆Estat
3,1 = 2.7(1) , (3.9)

corresponding (using r0 = 0.5 fm) to ∆Estat
2,1 = 594(21) MeV and ∆Estat

3,1 = 1076(48) MeV in
good agreement with the results of [10] at a fixed lattice spacing. These numbers in physical
units are meant as a rough illustration, since no quenching error is attached to them.

At O(1/mb), we obtain r0∆EHQET
2,1 = 1.54(9) when taking separate continuum limits

for the static and O(1/mb) energy differences, and

r0∆EHQET
2,1 = 1.56(8) (3.10)

when combining static and O(1/mb) energy levels before taking the continuum limit. The
results from both procedures agree within errors, indicating that the O(a) term omitted
in the combined extrapolation is at most a minor source of systematic error. In physical
units (again using r0 = 0.5 fm), our results correspond to ∆EHQET

2,1 = 606(35) MeV and
617(31) MeV, respectively.

For the Bs − B∗s mass difference, we find

r0∆EP−V = −0.075(8) (3.11)

giving ∆EP−V = −29.8(3.2) MeV via r0 = 0.5 fm. This is to be contrasted to the exper-
imental value [40] of mBs −mB∗s = −49.0(1.5) MeV. We note that while O(1/m2

b) effects
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may not be entirely negligible for such a small splitting, the difference is too large to be
entirely attributed to these. Instead, a genuine quenching effect is involved.

The spin splitting between the first radial excitations in the pseudoscalar and vector
channels is

r0∆EP′−V′ = −0.056(27) , (3.12)

which is compatible with the spin splitting between the ground states.
Our results confirm the expectation that the O(1/mb) contributions are small com-

pared to the static results. To get an idea of the size of higher order corrections in 1/mb, we
have considered the dependence of the energy level splittings on the matching conditions
chosen in the determination [23] of the HQET parameters ωkin and ωspin. We find that
the dependence is very minor, with a maximum deviation of δ|r0∆EP−V| = 0.005, less
than the statistical errors, and δ|r0∆E1/m

2,1 | = 0.002, much less than the statistical errors.
Comparing this to the naive power counting estimate of |O(1/m2

b)| ∼ 1/(r0mb)2 ∼ 1/100,
we see that the tested 1/m2

b terms are as small as expected or even smaller. Note that
1/r0 ≈ 400 MeV is indeed a typical non-perturbative QCD scale.

4 Conclusions

In this paper, we have reported results from quenched lattice QCD for the spectroscopy of
the low-lying excited states of the Bs and B∗s systems. An application of the generalized
eigenvalue method with all-to-all propagators to non-perturbative HQET at O(1/mb) al-
lows us to extract precise results for the energies of the lowest-lying radial excitations as
well as for the Bs − B∗s splitting. However, we emphasize again that a careful analysis of
systematic errors due to excited state contaminations is necessary.

A first relevant observation to be pointed out concerns the renormalizability of HQET.
Unlike for QCD on and off the lattice, there is no proof of renormalizability of the theory
to all orders of perturbation theory. However, we find that in our non-perturbative com-
putations the divergences cancel after proper renormalization of HQET [23]. The left over
lattice-spacing dependence in figure 2, figure 3 is very flat. To appreciate this, note that

r2
0E

kin
1 ≈ (24 , 47 , 77) for a = (0.1 , 0.08 , 0.05) fm (4.1)

as seen in table 3 and weaker but still very prominent divergences are present in Estat
n . In

other words we find strong numerical evidence for the renormalizability of the theory; in
fact also the universality of the continuum limit is demonstrated in the figures. It is also
worth emphasizing that the present demonstration is the first time the continuum limit is
taken for mass splittings in HQET.

We find the physical O(1/mb) corrections to be small throughout.
The precision attained, in particular when taken together with the relative smallness

of the O(1/mb) effects, indicates that non-perturbative HQET combined with the use of
the GEVP for data analysis is a reliable method for determining B meson spectra. We
intend to apply it to the Nf = 2 case in the near future. In this context one should remark
that we were able to achieve good precision using only 100 configurations in our quenched

– 11 –



J
H
E
P
0
5
(
2
0
1
0
)
0
7
4

study. Therefore we do expect to be able to decrease the errors for dynamical fermions.
However the influence of topological modes being updated only slowly [41] needs to be
controlled or better algorithms with a faster decorrelation need to be used. A promising
proposal has been made in [42].
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A All-to-all propagators

In this appendix, we explain the details of our implementation of all-to-all propagators,
which follows the idea of [34] with some useful improvements.

A.1 Even-odd preconditioning

To reduce the computational effort and storage requirement for the matrix inversions, we
consider even-odd preconditioning of the (hermitian) Wilson-Dirac operator Q = 2κγ5D.
With even/odd ordering of the sites one has a block structure

Q = γ5

(
Mee Meo

Moe Moo

)
,

where Mee (Moo) differs from unity by the clover term on the even (odd) sites, and Moe

(Meo) is the hopping term. Defining

B ≡

(
1e −M−1

ee Meo

0 1o

)
,

the preconditioned matrix B†QB is block-diagonal and the propagator can be factorized as

Q−1 = B

(
Q̂−1
ee 0
0 Q̂−1

oo

)
B† , (A.1)

where Q̂ee = γ5Mee is diagonal in space-time, and Q̂oo = γ5(Moo −MoeM
−1
ee Meo) = Q̂†oo.
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A.2 Approximate low modes and a stochastic estimator

We consider an orthonormal basis {v̂i : i = 1 . . . NL} of an NL dimensional subspace
(NL ≥ 0) of all fermion fields which live only on odd sites. Defining the projectors

PL ≡
NL∑
i=1

v̂i · v̂†i and PH ≡ 1o −PL ,

we can write

Q̂−1
oo = Q̂−1

oo (PL + PH) =
NL∑
i=1

(Q̂−1
oo v̂i) · v̂

†
i + Q̂−1

oo PH . (A.2)

A natural choice for v̂i are approximate eigenvectors of the low-lying eigenvalues of Q̂oo

Q̂oov̂i = λiv̂i + r̂i . (A.3)

with ‖v̂i‖ = 1 and v̂†i r̂k = 0. Then, the part Q̂−1
oo PL in (A.2) is expected to approximate the

long-distance behaviour of the propagator [34, 43], and the inversions1 needed in (Q̂−1
oo v̂i)

are cheap.
On the other hand, we can introduce a stochastic estimator for PH. We take random

vectors ηi with

〈ηi,α〉η = 0 , (A.4)

〈ηi,α η∗j,β〉η = δijδαβ , (A.5)

〈ηi,α ηj,β〉η = 0 , (A.6)

where α, β denote combined (color, Dirac, and site) indices, and 〈.〉η is the average over η.
The relations (A.4)–(A.6) hold, for instance, in the case of a U(1) noise

ηi,α = exp(iφi,α) ,

where φi,α are independently uniformly distributed in [0, 2π) (while for Z2 noise the average
in (A.6) would not vanish for i = j). Thus, the second term in (A.2) can be written as

Q̂−1
oo PH =

1
Nη

Nη∑
i=1

〈
Q̂−1
oo PH ηi · η†i

〉
η
, (A.7)

and the estimator of Q̂−1
oo can be written as a sum of dyadic products

Q̂−1
oo =

NL+Nη∑
i=1

〈
ŵi · û†i

〉
η
, (A.8)

with2

ŵi = Q̂−1
oo ûi , ûi = v̂i (i = 1, . . . , NL)

ŵi = Q̂−1
oo PH ûi , ûi = Nη

−1/2 ηi (i = NL+1, . . . , NL+Nη)

1 Since we do not explicitly use Q̂−1
oo v̂i ≈ λ−1

i v̂i, the errors ‖r̂i‖ in (A.3) are allowed to be large. In

practice, we require ‖r̂i‖ ≤ 0.001 · |λi|, and take λ−1
i v̂i only as start vectors for the inversion.

2 One may also use ŵi = Q̂−1
oo ûi and ûi = Nη

−1/2 PH ηi for i = NL+1, . . . , NL+Nη, but we have not

tested this option.
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The full propagator Q−1 is then obtained from (A.1). Since B connects only adjacent
time slices, the block Q̂−1

ee does not contribute to the propagator between sites with time
separation |x0 − y0| > 2a. In this case, we can simply write

Q−1 =
NL+Nη∑
i=1

〈
wi · u†i

〉
η
, (A.9)

with

wi ≡ B

(
0
ŵi

)
and ui ≡ B

(
0
ûi

)
.

Even-odd preconditioning can be seen as a form of dilution since there are only half as
many components of the noise field η in the even-odd preconditioned case as without pre-
conditioning. Note, however, that unlike other dilution schemes, even-odd preconditioning
does not increase the number of inversions needed.

A.3 Time dilution

In addition, we use the more conventional time dilution scheme. It is implemented by
replacing PH in (A.2) by PH

∑
tPt where Pt projects on the components corresponding to

(odd) sites with time coordinate t. Then, an independent stochastic estimator is introduced
for each term

PHPt =
1
Nη

Nη∑
i=1

〈
(PH ηti) · η†ti

〉
η
,

where the noise vectors ηti have non-vanishing components only for (odd) sites on
time-slice t.

Note that due to the hopping term in B the full propagator (A.9) from time slice x0 to
y0 receives contributions from noise vectors ηti on three time slices, t = x0, x0±a, i.e. three
inversions are required for the propagator from one time slice x0. However, a total of T
inversions is sufficient, and hence no extra effort is required, if one computes the propagator
for all x0, as we do in our measurements.

Analysing the variance of a heavy-light two-point correlator as described in [44], one
sees that the variance with time dilution decays roughly as e−(x0−y0)mπ , while the expression
without time dilution contains pieces independent of x0 − y0. This renders time dilution
very profitable.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribution,
and reproduction in any medium, provided the original author(s) and source are credited.
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