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A linear method is developed for solving the nonlinear differential equations of a lumped-parameter thermal 
model of a spacecraft moving in a closed orbit. This method, based on perturbation theory, is compared with heuristic 
linearizations of the same equations. The essential feature of the linear approach is that it provides a decomposition in 
thermal modes, like the decomposition of mechanical vibrations in normal modes. The stationary periodic solution of 
the linear equations can be alternately expressed as an explicit integral or as a Fourier series. This method is applied 
to a minimal thermal model of a satellite with ten isothermal parts (nodes), and the method is compared with direct 
numerical integration of the nonlinear equations. The computational complexity of this method is briefly studied for 
general thermal models of orbiting spacecraft, and it is concluded that it is certainly useful for reduced models and 
conceptual design but it can also be more efficient than the direct integration of the equations for large models. The 
results of the Fourier series computations for the ten-node satellite model show that the periodic solution at the second 
perturbative order is sufficiently accurate. 
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temperature of i node, K 
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perturbation parameter 
eigenvalue of J for ath mode, s~' 
Stefan-Boltzmann constant, 5.67 x 
1(T8 W • r r r 2 -K-4 

I. Introduction 

T HE thermal control of a spacecraft ensures that the temperatures 
of its various parts are kept within their appropriate ranges 

[1-4]. The simulation and prediction of temperatures in a spacecraft 
during a mission are usually carried out by commercial software 
packages. These software packages employ "lumped-parameter" 
models that describe the spacecraft as a discrete network of nodes, 
with one energy balance equation per node. The equations for the 
thermal state evolution are coupled nonlinear first-order differential 
equations, which can be integrated numerically. Given the thermal 
parameters of the model and its initial thermal state, the numerical 
integration of the differential equations yields the solution of the 
problem, namely, the evolution of the node temperatures. However, a 
detailed model with many nodes is difficult to handle, and its 
integration for a sufficiently long time of evolution can take 
considerable computer time and resources. Therefore, it is very 
useful to study simplified models and approximate methods of 
integrating the differential equations. 

Many spacecraft missions, in particular, satellite missions, consist 
of an initial transient part and then a stationary part, in which the 
spacecraft just goes around a closed orbit, in which the heat inputs are 
periodic. These periodic heat inputs are expected to induce periodic 



temperature variations, with a maximum and a minimum 
temperature in each orbit. This suggests a conservative approach 
that consists in computing only the temperatures for the hot and cold 
cases of the given orbit, defining them as the two steady cases with 
the maximum and minimum heat loads, respectively. Naturally, the 
real temperature variations in the orbit are smaller, because there is 
not enough time for the hot and cold cases to establish themselves. In 
fact, the temperature variations can be considerably smaller, to such a 
degree that it is necessary to integrate the differential equations, at 
least approximately. 

The differential equations for energy balance are nonlinear due to 
the presence of radiation couplings, which follow the Stefan-
Boltzmann quartic law. A common approach to these equations 
involves a linearization of the radiation terms that approximate them 
by heat conduction terms [3,5-7]. This approach transforms the 
nonlinear equations into standard linear heat conduction equations. 
But this approach has not been sufficiently justified, is of a heuristic 
nature and does not constitute a systematic approximation. 

In fact, nonlinear equations are very different from linear equations 
and, in particular, a periodic driving may not induce periodic solutions 
but much more complex solutions, namely, chaotic solutions. 
Therefore, we have carried out in preceding papers a full nonlinear 
analysis of spacecraft thermal models [8,9]. The conclusion of the 
analysis is that the complexities of nonlinear dynamics, such as 
multiple equilibria and chaos, do not appear in these models. While the 
existence of only one equilibrium state can be proved in general, the 
absence of chaos under driving by variable external heat loads can only 
be proved for a limited range of magnitudes of the driving loads. This 
range presumably includes the magnitudes involved in typical 
spacecraft orbits. The proofs in [8,9] are constructive and are based on 
a perturbation method that is expected to be sound when the linear 
equations corresponding to the first perturbative order constitute a 
good approximation of the nonlinear equations. This implies that the 
fully nonlinear solution describes a weakly nonlinear oscillator. Since 
the perturbative approximation is mathematically rigorous and 
systematic, it is worthwhile to study in detail the scope of the 
perturbative linear equations and, furthermore, to compare them with 
previous linear approaches of a heuristic nature. 

The main purpose of this paper is to study the linear method of 
predicting the thermal behavior of spacecraft in stationary orbits 
(Sees. II and III) and to test it on a minimally realistic thermal model of 
a satellite in a circular orbit. Since the general one- and two-node 
models analyzed in [8,9], respectively, are too simple, in this paper a 
ten-node thermal model of a small moon-orbiting satellite is defined 
(Sec. IV). This model is simple enough to allow all the quantities 
involved (thermal couplings and capacities, heat inputs, etc.) to be 
shown explicitly, and it is sufficient for illustrating the main features of 
the linear approach. As realistic thermal models have many more 
nodes, in Sec. V the important issue of scalability of the method and, 
hence, its practical applications are considered. Computational aspects 
of the steady-state problem have been studied by Krishnaprakas 
[10,11] and by Milman and Petrick [12], while computational aspects 
of the direct integration of the nonlinear equations for the unsteady 
problem have been studied by Krishnaprakas [13]. Here the focus is on 
the linear equations for the stationary but unsteady case and its 
computational aspects are surveyed. 

A note on notation: in the equations that contain matrix or vector 
quantities, sometimes component notation (with indices) is used, 
while other times compact matrix notation (without indices) is used, 
according to the nature of the equations. 

II. Linearization of the Heat-Balance Equations 
A lumped-parameter thermal model of a continuous system 

consists of a discrete network of isothermal regions {nodes) that 
represent a partition of the total thermal capacitance and that are 
linked by thermal conduction and radiation couplings [1-5]. This 
discretization reduces the integrodifferential heat transfer equa­
tions to a set of energy balance ordinary differential equations 
(ODEs), one per node, which control the evolution of the nodes' 
temperatures [5]: 

C,tt = Q,(t) - J2lK>j(T> ~ Tj) + RtJ(T} - Tf)] - Rt(Tf - I+), 

i = l,...,N (1) 

where N is the number of nodes and <2;(0 contains the total heat 
input to the !th node from external radiation and from internal energy 
dissipation (if there is any). The conduction and radiation coupling 
matrices are denoted by K and R, respectively; they are symmetric 
(Kij = Kjt and Rtj = Rjt) and Ku = Ru = 0; so there are N(N - 1) 
independent coupling coefficients altogether, but many vanish, 
usually. The temperature T0 ~ 3 K is the temperature of the 
environment, namely, the cosmic microwave background radiation. 
The ith node coefficient of radiation to the environment is given by 
Rt = AjSja, where At denotes the outward facing area, st its 
(infrared) emissivity, and a is the Stefan-Boltzmann constant. The 
constant term RjT^ can be included in Qj(t) or ignored altogether, if 
each Tt ^> T0. Equations (1) coincide with the ones implemented in 
commercial software packages, for example, ESATAN [14]. 

There is no systematic procedure for finding the analytical solution 
of a system of nonlinear differential equations, except in some 
particularly simple cases. Of course, nonlinear systems can always 
be integrated numerically with finite difference schemes. Methods of 
this kind are employed in commercial software packages. When a 
nonlinear system can be approximated by a linear system and, hence, 
an approximate analytic solution can be found, this solution 
constitutes a valuable tool. Actually, one can always resort to some 
kind of perturbation method to linearize a nonlinear system. 
Therefore, we now study the rigorous linearization of Eqs. (1) based 
on a suitable perturbation method, and we also describe, for the sake 
of a comparison, a heuristic linearization, which actually is best 
understood in light of the results of the perturbation method. 

A. Perturbative Linearization 

If we assume that the heat inputs Qj(t) in the energy balance Eqs. (1) 
are periodic, namely, that there is a time interval T such that 
Qj(t + T) = Qj(t), then it seems sensible to study first the effect of 
the mean heat inputs in a period. This averaging method, introduced in 
[8,9], relies on the fact that the autonomous nonlinear system of ODEs 
for constant Qt can be thoroughly analyzed with analytical and 
numerical methods. For example, it is possible to determine that there 
is a unique steady thermal state and that it is (locally) stable [9,12]. The 
actual values of the steady temperatures can be found efficiently with 
various numerical methods [10-12]. Furthermore, the eigenvalues and 
eigenvectors of the Jacobian matrix of the nonlinear system of ODEs 
provides us with useful information about the dynamics, in particular, 
about the approach to steady state: the eigenvectors represent 
independent thermal modes and the eigenvalues represent their 
relaxation times [9]. 

Once the averaged equations are solved, the variation of the heat 
inputs can be considered as a driving of the averaged solutions. Thus, 
we can define the driving function 

F,(f) : l,...,N 

where {Qt} denotes the mean value of Qj(t) over the period of 
oscillation. A weak driving function must not produce a notable 
deviation from the averaged dynamics. In particular, the long-term 
thermal state of an orbiting spacecraft must oscillate about the 
corresponding steady state. To embody this idea, we introduce a 
formal perturbation parameter e, to be set to the value of unity at the 
end, and write Eqs. (1) as 
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Then, we assume an expansion of the form 

oo 

r,-(r) = XW(»w(0 (3) 

When we substitute this expansion into Eqs. (2), we obtain for the 
zeroth order of s 

c, 
r i1 (o)i ~ 1 (oy) +-pr\1 (o)i ~ 1 (oy) 

;=1 L ~i 

i=l,...,N 

c y* m * (a>j) 

(4) 

that is to say, the averaged equations. The initial conditions for these 
equations are the same as for the unaveraged equations. 

For the first order in e, we obtain the following system of linear 
equations: 

Here, /;.-(?) is the Jacobian matrix 

i = l,...,N (5) 

Jlj(t)=—Tl(T) 
T=Tm(t) 

where T^if) is the solution of the zeroth-order equation. 
Equations (5) are to be solved with the initial condition T^ (0) = 0. 

The elements of the Jacobian matrix at a generic point in the 
temperature space are calculated to be 

Jij = CTl(Kij+4Ri/rj), iiijtj 

J» = C- •J2(K*+4RlkT?)- • 4RiT? 

(6) 

(7) 

This matrix has interesting properties. First of all, it has negative 
diagonal and nonnegative off-diagonal elements. In other words, —J 
is a Z matrix [15]. Furthermore, it fulfills a semipositivity condition 
that qualifies it as a nonsingular M matrix [9]. Since the eigenvalues 
of an M matrix have positive real parts, the opposite holds for J, 
namely, its eigenvalues have negative real parts. One more interesting 
property of—J, related to semipositivity, is that it possesses a form of 
diagonal dominance: it is similar to a diagonally dominant matrix 
and the similarity is given by a positive diagonal matrix. Naturally, 
this property is shared by J. These properties are useful to prove some 
desirable properties of the solutions of Eqs. (5). 

The chief property of J is that —J is a nonsingular M matrix. In 
particular, it implies that — J - 1 is nonnegative and, therefore, that the 
Perron-Frobenius theory is applicable to it [15]. The relevant results 
to be applied are: 1) Perron's theorem, which states that a strictly 
positive matrix has a unique real and positive eigenvalue with a 
positive eigenvector and that this eigenvalue has maximal modulus 
among all the eigenvalues, and 2) a second theorem, stating that if a Z 
matrix that is a nonsingular M matrix is also "irreducible," then its 
inverse is strictly positive. The irreducibility of J follows from the 
symmetry of the matrices Ktj and Rtj [9]. As the positive (Perron) 
eigenvector of — J - 1 is the eigenvector of J that corresponds to its 
smallest magnitude eigenvalue, it defines the slowest relaxation 
mode (for a given set of temperatures). Therefore, in the evolution 
of temperatures given by Eqs. (4), steady state is eventually 
approached from the zone corresponding to simultaneous temper­
ature increments (or decrements). 

The matrix J(t) in Eqs. (5) is obtained by substituting T(0y(t) for 
Tj in Eqs. (6) and (7). Then, the nonhomogeneous linear system 
with variable coefficients, Eqs. (5), can be solved by variation of 
parameters [9], yielding the expression 

' .( ' 
T(l)(t) = U(t) U(r)-l-F(r)dT (8) 

where U(t) is a matrix formed by columns that are linearly 
independent solutions of the corresponding homogeneous equation, 
with the condition that U(0) = I (the identity matrix). The difficulty 
in applying this formula lies in computing U(t), that is, in computing 
the solutions of the homogeneous equation. Moreover, this 
computation demands the previous computation of the solution for 

r(0)(0-
Since we are only interested in the stationary solutions of the heat-

balance equations rather than in transient thermal states, it is possible 
to find an expression of these solutions that is more manageable than 
Eq. (8). The transient thermal state relaxes exponentially to the 
stationary solution, which is a limit cycle of the nonlinear equations, 
technically speaking [8,9]. Therefore, the stationary solution is given 
by the solution of Eqs. (5) with the constant Jacobian matrix 
calculated at the steady-state temperatures, which we name Tt. 
i = 1 , . . . , N? This solution is simply [9] 

Tm(f) f 
Jo 

exp[ti] • F(t — x) dx (9) 

with J calculated at the point t . Furthermore, the periodic stationary 
solution is obtained by extending the upper integration limit from / to 
infinity: 

i r ~ ( / ) = / exp[ti] • F(t - t ) dr (10) 

This function is indeed periodic, unlike the one defined by Eq. (9), 
so it is determined by its values fort G [0, T\. Note that {T9^.(t)} = 0. 
For numerical computations, it can be convenient to express the 
integral from 0 to oo as an integral from 0 to T, taking advantage of 
the periodicity as follows: 

f°° ^ f(n+l)T 
I exp[ti] • F(t — t ) dr = ^ / exp[ti] • F(t — t ) dz 

J0 n=0 JnT 

OO /><y 

= y^exp(nTi) / exp[ti] • F(t — x)dz 
„=n Jo 

= [I- exp(TJ ) ] - 1 / exp[ti] • F(t - x) dx 
Jo 

(the series converges because the eigenvalues of J have negative real 
parts). In the last integral, the argument of F can be transferred to the 
interval [0, T\: 

CT ft CT 
I exp[ti] • F(t — x) dx = I exp[ti] • F(t — x) dx + I exp[ti] 

Jo Jo Jt 

• F(t - x + T) dx 

where t e [0, T]. Note that the one-period shift in the argument of the 
last F is necessary for the argument to be in [0, T\. 

Some remarks are in order. First of all, we have assumed that there 
is one asymptotic periodic solution of the nonlinear Eqs. (2) and only 
one (a unique limit cycle). Equivalently, we have assumed that the 
perturbation series converges. This assumption holds in an interval of 
the amplitude of heat input-variations F [9]. Besides, for the integrals 
in Eq. (10) and the following equations to make sense, it is required 
that exp[ti] ^ 0 as x —>• oo. This is guaranteed, because the 
eigenvalues of J have negative real parts, as is necessary for the 
steady state to be stable. In fact, the eigenvalues are expected to be 
negative real numbers and J is expected to be diagonalizable but both 
properties are not rigorously proven [9] (however, see Sec. II.B). 

If J is diagonalizable, that is to say, there is a real matrix P such that 
P~lJP is diagonal, then the calculation of the integrals is best carried 

tr[*he solution can also be derived as the limit of Eq. (8) in which 
U(t) = exp(Jt). 



out on the eigenvector basis, given by the matrix P. Using this basis, 
Eq. (10) is expressed as 

N foo N 

PmUO = E p - / e x P ^ - l E ^ M ~ *)d^ 
a = l •'0 ;=1 

i=l,...,N (11) 

where the first sum runs over the eigenvectors and their 
corresponding eigenvalues Xa. Expression (11) allows us to compare 
the contribution of the different thermal modes. In particular, for the 
fast modes, such that | Xa | is large, we can use Watson's lemma [ 16] to 
derive the asymptotic expansion: 

Jo 
exp[TA.JFa(f-T)dt = 

Fg(t) 

-X„ 
Fg(t) 

' XI o 

where Fa = ^jPjFj. When \Xa\ is large, the first term suffices 
(unless Fa(t) is also large, for some reason); and the first term is 
small, unless Fa(t) is large. In essence, if the fast modes are 
not driven strongly, they can be neglected in the sum over a in 
Eq.(l l) . 

For second order in e, a straightforward calculation [9] yields the 
following linear equation: 

T<2)=J(t)-T(2)+G(t) (12) 

where J(t) is the same Jacobian matrix that appears in the first-order 
Eq. (5) and 

N g^ 6 / N \ 
G'=J2~^L T(0)jT(l)j -7^[j2RiJ+Ri) A^W-

i=l,...,N (13) 

The initial condition for Eq. (12) is T^(0) = 0, as for Eqs. (5). 
Therefore, the first-order and second-order equations have identical 
solutions in terms of their respective driving terms, although G. 
Eqs. (13), is a known function of / only when the lower-order 
equations have been solved. The integral expression, Eqs. (10), of the 
stationary solution T9R (t) is also valid for T?Z (t), after replacing F 
with G and using in Eq. (13) the stationary values T^(t) = T and 
^(i)(0 = ?m(') (which make G periodic). 

It is possible to carry on the perturbation method to higher orders, 
and it always amounts to solving the same linear equation with 
increasingly complicated driving terms that involve the solutions of 
the lower-order equations. The example of Sec. IV shows that, in a 
typical case, T^Ai) is a small correction to T^Ai), and further 
corrections are not necessary. This confirms that the perturbation 
method is reliable for a realistic case. 

B. Heuristic Linearization 
A linearization procedure frequently used in problems of radiation 

heat transfer [3,6,7] consists of using the algebraic identity 

T\-T) = (T, + Tj)(T? + TJW - Tj) 

to define an effective conductance for the radiation coupling between 
nodes i and j . The equation 

RijfXf - T*) = Kfj(Tt - Tj) 

defines the effective conductance 

K ^ R ^ + TjXTf + TJ) 

for specified values of the node temperatures Tt and Tj. For an 
orbiting spacecraft, the natural base values of the node temperatures 
are the ones that correspond to the steady-state solution of the 
averaged equations, namely, Tt, i = 1 , . . . , N. In the special case of 

radiation to the environment, RtTf can be replaced with linear terms 
KfTt such that Kf = Af]^, for i = 1 , . . . , N. 

The resulting linear equations are 

c,ft = Qt(t) - J2(K>i + 4)(r> - TJ) - KfT>-

i = 1. ,N (14) 

These equations have only conduction couplings, so they are a 
discretization of the partial differential equations of heat conduction. 
As a linear system of ODEs, the standard form is 

r! = E i ^ + c, ' l,...,N 

where J (the Jacobian matrix) is now given by 

h = Ci •Y^iKx + Kft-Kf 

(15) 

(16) 

(17) 

The linear system of Eqs. (15) can be solved in the standard way, 
yielding 

T(t) = exp[/i] im+L exp[-ti] • q(x) dt (18) 

where we have introduced the vector q(t), with components 
?i(0 = fii(0/Cj- We can also express the solution in terms of the 
driving function F = q — {q}: 

l T(t) = exp[/i]r(0) + / exp[(f - x)J\ • (F(r) + (q)) d t= (19) 

exp[/i]r(0) + / exp[(f - x)J] • F(x) dt + J-l(exp[tJ] - I)(q) I 
(20) 

For large ?, this solution tends to the periodic stationary solution 

foo 
T°°(t)= / sxp[rJ] • F(t-r)dr-J-1 {q) (21) 

Jo 

assuming that exp[/i] —>• 0 as / —>• oo. This is a consequence of the 
structure of J, as in the preceding section. In the present case, the 
eigenvalues of J, beyond having negative real parts, are actually 
negative real numbers, as we show next. 

The total conductance matrix K + KR is symmetric but this does 
not imply that J is symmetric. Nevertheless, if we define 
C = dia.g(Cl,... ,CN), the matrix C1'2 • J • C~1^2 is symmetric, 
because its off-diagonal matrix elements are 

K -t- KR 

(cWc-1*2),, = li^—j. 
J" JC~Cj • 

j=l,...,N, and i^j 

i = l,...,N, 

Hence, the matrix C1/'2/C~1/'2, similar to J, has real eigenvalues. 
Furthermore, C1/'2/C~1/'2 is diagonalized by an orthogonal 
transformation; that is to say, there is an orthogonal matrix O such 
that 

o' • (C1'2JC-1'2) • o = {c-l'2orl • J • (C-l'20) 

is diagonal. Therefore, the thermal modes are actually normal; that is 
to say, the modes, which are the eigenvectors of J and hence the 
columns of the matrix P = C~l/20, are related to the eigenvectors of 



C1/'2/C~1/'2, which are normal and are given by the columns of O. 
Alternatively, one can say that the eigenvectors of J are normal in the 
"metric" defined by C; namely, 

N 

/ , CiPiaPih = oah 

!=1 

which can be written in matrix form as P'CP = I. Naturally, the 
orthogonality of modes greatly simplifies some computations. 

Furthermore, the symmetry of the conductance matrix implies that 
the sum in Eq. (14) can be written as the action of a graph Laplacian 
[17] on the temperature vector. Naturally, the graph is formed by the 
nodes and the linking conductances. A graph Laplacian is a 
discretization of the ordinary Laplacian and is conventionally 
defined with the sign that makes it positive semidefinite. The zero 
eigenvalue corresponds to a constant function, that is, a constant 
temperature, in the present case. A vector with equal components, 
say, equal to l/\/~N, is the positive (Perron) eigenvector of the matrix. 
With more generality, the Laplacian of a graph can be defined as a 
symmetric matrix with off-diagonal entries that are negative if the 
nodes are connected and null if they are not [18]. This definition does 
not constrain the diagonal entries and, therefore, does not imply that a 
graph Laplacian is positive semidefinite. It can be made positive 
definite (or just semidefinite) by adding to it a multiple of the identity 
matrix, which does not alter the eigenvectors. Of course, the 
eigenvector corresponding to the smallest eigenvalue does not have 
to be constant, but the Perron-Frobenius theorem [15] tells us that it 
is positive. By this general definition of a graph Laplacian, the matrix 
—C1/'2/C~1/'2 is a different Laplacian for the same graph, and 
Eqs. (15) contain the action of this Laplacian on the vector Cl^2T. 
Notice that this general definition of a graph Laplacian is connected 
with the definition of a Z matrix [15] and, actually, a symmetric Z 
matrix is a graph Laplacian. If such a matrix is positive definite, then 
it is equivalent to a Stieltjes matrix, namely, a symmetric nonsingular 
M matrix [15]. The general Jacobian obtained in Sec. II. A is also such 
that —J and also — C1/'2/C~1/'2 are both nonsingular M matrices, but 
they need not be symmetric. 

To investigate the accuracy of the approximation of the radiation 
terms by conduction terms, let us compare the periodic solution given 
by Eq. (21) with the first-order perturbative solution found in 
Sec. II.A, namely, T°°(t) = f + T^(t). Of course, the Jacobian 
matrices in the respective integrals differ, as do the temperature 
vectors added to the integrals, namely, T or —J~l{q). While T 
corresponds to the authentic steady state of the nonlinear averaged 
equations, — J - 1 {q} corresponds to the steady state of Eqs. (14) after 
averaging, which is a state without significance, since we have 
already used the set of temperatures T of the authentic steady state 
to define the radiation conductances Kf= in Eq. (14). Therefore, 
the only sensible linear solution is the perturbative solution 
T°°{t) = T + T9^.(t), even if we replace the Jacobian matrix given by 
Eqs. (6) and (7) with the one given by Eqs. (16) and (17). 

In our context, the notion of radiation conductance actually 
follows from the symmetry of the matrices CJ or C1/'2/C~1/'2. 
Therefore, the most natural definition of radiation conductance 
probably is Kfj = 2Rij(Ti +Tj), that is, the symmetrization of the 
term AR^fj in Eq. (6). This symmetrization has been tested by 
Krishnaprakas [11], considering the steady-state problem for models 
with up to N = 1237 nodes and working with various resolution 
algorithms. He found that the effect of symmetrization is not 
appreciable. To estimate the effect of the antisymmetric part of the 
matrix AR^fj, namely, 2Rij(jri — fj), on the eigenvalue problem 
for the Jacobian, we proceed as follows. We formulate this 
eigenvalue problem in terms of the matrix C1/'2/C~1/'2, so that it is an 
eigenvalue problem for a symmetric matrix perturbed by a small 
antisymmetric part. This problem is well conditioned, because the 
eigenvectors of the symmetric matrix (the columns of the matrix O) 
are orthogonal. In particular, the perturbed eigenvalues are still real. 
Furthermore, the first-order perturbation formula for the eigenvalue 
Xa associated with an eigenvector ea [16] yields 

N 

$K = J2 SAije"ie"J = 0 

vanishing because the perturbation matrix SA is antisymmetric. So 
the nonvanishing perturbative corrections begin at the second order 
in the perturbation matrix, and, in this sense, they are especially 
small. 

III. Fourier Analysis of the Periodic Solution 
Given that T?R (t) is a periodic function, it can be expanded in a 

Fourier series. To derive this series, let us first introduce the Fourier 
series of F(t): 

OO 

F(t)= J2 F(m)e2mm'/T 

m=—oc 

Inserting this series in the integral of Eq. (10) and integrating term 
by term, we obtain the Fourier series for T?Z (t). Alternatively, we can 
substitute the Fourier series for both T9^.(t) and F(t) into Eqs. (5), 
where J is taken to be constant; then we can solve for the Fourier 
coefficients of T?Z (t). The result is 

OO 

r ~ ( / ) = J2 e2nim,/T(2jiimI/T-f)-l-F(m) (22) 
m=—oc 

The Fourier coefficients F(m) are obtained by integration: 

1 fr 

F(m)=— F(t)e-2"im"T dt (23) 
T Jo 

Given that F(t) is a real function, 

F(-m) = F*(m) (24) 

Furthermore, {F(t)} = 0 implies 

F(0) = 0 (25) 

So F(t) is defined by the sequence of Fourier coefficients for 
positive m. This sequence must fulfill the requirement that 
limm^00 F(m) = 0, so a limited number of the initial coefficients 
may suffice. 

Actually, for numerical work, Eq. (23) can be conveniently 
replaced by the discrete Fourier transform 

1 n— 1 

p(m) =-^2 F(kT/n)e-2nimk/" (26) 
n k=0 

which only requires sampling of the values for F(t), but also only 
defines a finite number of independent Fourier coefficients, because 
F(m + n) = F(m). Notice that we usually have available just a 
sampling of the heat inputs at regular time intervals, rather than 
the analytical form of Qi(t). To calculate the exact number of 
independent Fourier coefficients provided by Eq. (26), we must take 
into account Eqs. (24) and (25). If n is an odd number, 
the independent Fourier coefficients F(m) are the ones with 
m= 1,...,(«— l)/2; that is to say, there are n — 1 independent real 
numbers. If n is even, the independent Fourier coefficients are the 
ones with m = 1 , . . . , n/2, and 

F(n/2)=-J2(-)«F(kT/n) 

is real, so there are n—\ independent real numbers as well. For 
definiteness, let n be odd. Then, we can express F(t) as 



F(t) = 2Re 
in-l)/2 

Y^ F(m)e2nim'/T 

Of course, the values of F(t) at / = kT/n, k = 0 , . . . , n — 1, are 
the sampled values employed in Eq. (26), but the expression is valid 
for any / G [0, T] and constitutes an interpolation of the sampled 
values. Naturally, the higher the sampling frequency n, the more 
independent Fourier coefficients we have and the more accurate the 
representation of F(t) is. 

As is well known, the Fourier series of a function F(t) that is 
piecewise smooth converges to the function, except at its points of 
discontinuity, where it converges to the arithmetic mean of the two 
one-sided limits [19]. However, the convergence is not uniform, so 
that partial sums oscillate about the true value of the function near 
each point of discontinuity and "overshoot" the two one-sided limits 
in opposite directions. This overshooting is known as the Gibbs 
phenomenon, and, in our case, produces typical errors near the 
discontinuities of the driving function F. These discontinuities are 
due to the sudden obstructions of the radiation on parts of the aircraft 
that occur at certain orbital positions, for example, when the sun is 
eclipsed.* Section IV.B shows that the Gibbs phenomenon at eclipse 
points can be responsible for the largest part of the error of the linear 
method when the discrete Fourier transform is used. 

The approximation of T?Z (t) provided by the n samples of F(t) is, 

of course, 

Tfi(t) = 2Re 
(n-l)/2 

J^ e2nim,lr(2mml/T - jyl • F(m) 
- m=l 

(27) 

and is valid for any / G [0, T\ However, if we are only interested in 
T9^.(t) at / = kT/n, k = 0 , . . . , n — 1, we can compute these values 
with the inverse discrete Fourier transform 

T~ (kT/n) = Y e^imkln I 2jli 

m=0 

n - \ 
modi TO H , n 

n - i 
l/T-J F(m) (28) 

where, for m = (n + l ) / 2 , . . . , n — 1, F(m) = F(m — n) = 
F*(n — TO), and where mod(-, n) gives the remainder of the integer 
division by n. This inverse discrete Fourier transform can be more 
convenient for a fast numerical computation. Regarding computa­
tional convenience, the discrete Fourier transform, be it direct or 
inverse, is best performed with a fast Fourier transform (EFT) 
algorithm. The classic FFT algorithm requires n to be a power of 2 
[20,21]; in particular, it has to be even. 

The function T?Z (t), computed by Fourier analysis from n samples 

of Qi(t), is to be compared with the one computed by a numerical 
approximation of the integral formula, Eq. (10), in terms of the same 
samples. Naturally, we can use instead of the integral over t G [0, oo] 
the integral over t G [0, T] following Eq. (10). This integral can be 
computed from the n samples of F(t) by an interpolation formula, 
say the trapezoidal rule. It is not easy to decide whether this 
procedure is more efficient than Fourier transforms. Considering that 
the substitution of the continuous Fourier transform, Eq. (23), by the 
discrete transform, Eq. (26), is equivalent to computing the former 
with the trapezoidal rule, the integral formula may seem more direct. 
In particular, this formula allows us to select the values of / for which 
we compute T?Z (t) independent of the sampling frequency, so we 
can choose just a few distinguished orbital positions and avoid 
the computation of all the n — 1 integrals (one is removed by the 
condition {T9^.(t)} = 0). Note that the computation of all of the 
independent F(m) with Eq. (26) is equivalent to the computation of 
precisely n — 1 integrals. However, the efficiency of the FFT reduces 

*Strictly speaking, the function Qt{i) is always continuous but it undergoes 
sharp variations at some times. These sharp variations can be considered as 
discontinuities, especially, if the function is sampled. 

the natural operation count of this computation, of order n2, to order 
n log n; so its use can be advantageous, nevertheless. 

It goes without saying that the second-order perturbative 
contribution T^ (t) to the stationary solution is given by the right-
hand side of Eq. (27) with the Fourier coefficients F(m) replaced by 
the Fourier coefficients of the function G(t) defined in Sec. II.A. 

IV. Ten-Node Model of a Moon-Orbiting Satellite 
To test the previously explained methods, we construct a small 

thermal model of a simple spacecraft, namely, a ten-node model of a 
moon-orbiting satellite. Our satellite ten-node model supports a basic 
thermal structure and is simple enough for allowing one to explicitly 
display the main mathematical entities, e.g., the matrices K, R and J. 
The satellite consists of a rectangular parallelepiped (a cuboid) of 
square base plus a small cylinder on one of its sides that simulates an 
observation instrument, as represented in Fig. 1. In addition, at a 
height of two thirds of the total height, there is an inner tray with the 
electronic equipment. The dimensions of the cuboid are 
0.2 x 0.2 x 0.3 m, and the cylinder has a length of 0.1 m and a 
radius of 0.04 m. The satellite's frame is made of aluminum alloy, 
using plates 1 mm thick, except the bottom plate, which is 2 mm 
thick. This plate plays the role of a radiator and its outer surface is 
painted white to have high solar reflectance. The cylinder is made of 
the same aluminum alloy, as well as the tray; they are 0.5 and 2 mm 
thick, respectively. The sides of the satellite, except the one with the 
instrument, are covered with solar cells, which increase the sides' 
thickness to 2.25 mm. 

The thermal model of the satellite assigns one node to each face of 
the cuboid, one more to the cylinder and another to the tray, that is, 
eight nodes altogether. Furthermore, to conveniently split the total 
heat capacitance of the electronic equipment, it is convenient to add 
two extra nodes with (large) heat capacitance but with no surface that 
could exchange heat by radiation. Nodes of this type are called 
"nongeometrical nodes." In the present case, they represent two 
boxes with equipment placed above and below the tray, respectively. 
We order the ten nodes as shown in Fig. 1. The lower box (node 10) is 
connected to the radiator by a thermal strap. Given the satellite's 
structure and assuming appropriate values of the specific heat 
capacities, it is possible to compute the capacitances Ct, 
i = 1 . . . , 10, with the result given in Table 1. Using the value of 
the aluminum alloy heat conductivity and assuming perfect contact 
between plates, we compute the conduction coupling constants Ktj 

between nodes i, j = 1 , . . . , 8. The remaining conduction coupling 
constants are given reasonable values, shown in Eq. (29). The 
computation of the radiation coupling constants Rtj, i,j = 1 , . . . , 8 
and Rt, i = 1 , . . . , 8, and indeed the computation of the external 
radiation heat inputs requires a detailed radiative model of the 
satellite, consisting of the geometrical view factors and the detailed 
thermooptical properties of all surfaces. This radiative model allows 
us to compute the respective absorption factors [1]. 

Node id. 6 
Ext. Optical: Low e 
t: 1 mm 

Node id. 4 
Ext. Optical: Solar cells 
t: 2.25 mm 

Node id. 3 
Ext. Optical: Solar cells 

Node id. 5 
Ext. Optical: White 
t: 2 mm 

Node id. 2 
Ext. Optical: Low e 

Node id. 8 
Ext. Optical: Low e 

Fig. 1 Satellite's structure and node description. The front face, 
removed to see the interior, corresponds to node 1 and is equivalent to 
nodes 3 or 4. 



Table 1 Node capacities and mean heat inputs with their 
associated steady-state temperatures 

Node 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

C;, J/K 

331.7 
147.4 
331.7 
331.7 
196.6 
98.3 

196.6 
31.9 

800.0 
1400.0 

(a>,w 
15.18 
2.30 

15.17 
14.80 
3.91 
0.63 
0 
1.70 
4.35 
6.15 

fi,°C 

2.6 
3.6 
2.6 
2.3 
0.2 
2.2 
6.3 
4.7 

15.9 
11.1 

The thermooptical properties of the surfaces are assumed to be as 
realistic as possible, given the simplicity of the thermal model. All 
radiation reflection is assumed to be diffuse, as is common for many 
types of surfaces. The inner surfaces are painted black and have high 
emissivity, e = 0.84, to favor the uniformization of the interior 
temperature. The outer surfaces are of three types. The three sides 
covered with solar cells also have high emissivity, e = 0.84, to favor 
the cooling of the solar cells. On the other hand, they have high solar 
absorptivity, as = 0.75. Of this 0.75, 0.18 is processed into 
electricity and the remaining 0.57 dissipates as heat in the solar cells. 
The top surface, the surface with the cylinder, and the cylinder itself 
(its two sides) have low emissivity, e = 0.1, and low solar 

absorptivity, as = 0.2, which are chosen to simulate the effect of a 
multilayer insulator. In contrast, the bottom surface simulates a 
radiator, with e = 0.8 and as = 0.2 (like an optical solar reflector). 
All of these thermooptical properties are summarized in Fig. 2. For 
the computation of the corresponding absorption factors, we employ 
the ray-tracing Monte Carlo simulation method provided by 
ESARAD (ESATAN's radiation module) [14]. 

Taking into account the preceding information, one obtains the 
following conduction (in W / K ) and radiation (in W / K 4 ) matrices: 

(K,j) 

1 

10 

f ° 
3.47 

0 
5.64 
2.86 
2.00 
4.50 

0 
0 

\ 0 

3.47 0 5.64 
0 3.47 0 

3.47 0 5.64 
0 5.64 0 

1.67 2.86 2.86 
1.33 2.00 2.00 
3.50 4.50 4.50 
3.00 0 0 

0 0 0 
0 0 0 

2.86 
1.67 
2.86 
2.86 

0 
0 
0 
0 
0 

3.00 

2.00 
1.33 
2.00 
2.00 

0 
0 
0 
0 
0 
0 

4.50 
3.50 
4.50 
4.50 

0 
0 
0 
0 

4.50 
6.00 

0 
3.00 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

4.50 
0 
0 
0 

0 
0 
0 
0 

3.00 
0 

6.00 
0 
0 
0 

(Rij) = io-

( 0 5.06 4.63 5.05 3.i 
5.06 0 5.05 4.63 3.i 
4.63 5.05 0 5.06 3.69 2.71 6.39 
5.05 4.63 5.06 0 3.69 2.70 6.38 
3.68 3.68 3.69 3.69 0 0 3.57 
2.71 2.70 2.71 2.70 0 0 7.19 
6.39 6.39 6.39 6.38 3.57 7.19 0 

0 0.13 0 0 0 0 0 
0 0 0 0 0 0 0 

V o o o o o o o 

(29) 

2.71 6.39 0 0 0\ 
2.70 6.39 0.13 0 0 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
o oy 

(30) 

(Rt) = 10-9(2.86, 0.32, 2.86, 2.86, 1.81,0.23, 0, 0.23,0, 0) (31) 

Fig. 2 Thermooptical properties of the satellite's surfaces (details are 
given in the text). 

The satellite's thermal characteristics are defined by the data set 
{Cj,.STj;-,./?j;-,./?J, but the radiation heat exchange depends on the 
nodal temperatures, which in turn depend on the heat input. As 
explained in Sec. II.A, the appropriate set of nodal temperatures 
corresponds to the steady state for averaged heat inputs, given by the 
algebraic equation that results from making T^t = 0 in Eq. (4). 
Since we need the external heat inputs and, therefore, the orbit, we 
proceed to define the orbit characteristics. 

We choose a circular equatorial orbit 26,926 m above the moon's 
surface, such that T = 6660 s. The radiation heat input to the 
satellite consists, on the one hand, of the solar irradiation and the 
moon's albedo, and, on the other hand, of the moon's constant 
infrared (IR) radiation. We take 0.12 for the mean moon' s albedo and 
270 K for the blackbody equivalent temperature of the moon. There 
is also heat produced by the dissipation of electrical power in the 
equipment (nodes 9 and 10). For the sake of simplicity, the 
dissipation rate is assumed to be constant, equal to the mean electrical 
power generated in an orbit. In a part of the orbit, the moon eclipses 
the sun, so the satellite receives no direct sunlight or albedo, although 
there is always IR radiation from the moon. The satellite is stabilized 
such that the cylinder (the "observation instrument") always points to 
the moon and the longer edges are perpendicular to the orbit. The 
radiation heat input can be computed by taking into account the given 
orbital characteristics and the satellite's thermooptical character­
istics, in particular, the absorption factors. It has been computed with 
ESARAD, taking 111 positions on the orbit, that is, at intervals of 
1 min. 



Fig. 3 The 111 positions of the satellite in its orbit. The sunlight comes 
along the x axis. 

In Fig. 3, all 111 positions are plotted. The initial position 
of the satellite is at the subsolar point and it moves towards the east. 
The total external radiation heat input to the first eight nodes (the 
ones that receive radiation) is plotted in Fig. 4 (only at every other 
position, for clarity). Note the symmetry between nodes 1 and 3, 
which denote the lateral faces, covered with solar cells. Node 4 
corresponds to the back side, also covered with solar cells. So the 
external radiation load on it has a similar time variation, but it is 
displaced. The solar radiation absorbed by all solar cells results in 
an orbital mean power rate of 10.5 W, dissipated in the equipment 
and split between nodes 9 and 10, which receive 4.35 and 6.15 W, 
respectively. The external radiation absorbed by the side with the 
cylinder (node 2) is considerably smaller than the radiation 
absorbed by the sides with solar cells, due to the low value of as 

(and of e, as well) for the corresponding surface. The bottom and 
top outer surfaces, which belong to nodes 5 and 6, respectively, 
have view factors for the external radiation that are much less 
favorable than those of the side surfaces. Nevertheless, the amount 
of lunar IR radiation absorbed by the bottom surface, due to its 
high e, is such that the orbital mean of the external heat input to 
node 5 is, in fact, larger than the one for node 2 (see Table 1). 
Naturally, node 7, with no outer surfaces, does not absorb any 
external radiation. 

To determine the hot and cold cases of the orbit, we compute the 
total heat load on the satellite for each position in the orbit, finding a 
maximum of 90.59 W at position 14 and a minimum of 18.65 W at 
any position in the eclipse, during which all the heat loads stay 
constant. The solution of the corresponding steady-state problems at 
position 14 and at aposition in the eclipse yields the two sets of nodal 
temperatures (for the given node order): 
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Fig. 4 Variation of the external heat input with time t (in minutes) 
along the orbit For both plots, the node numbers are denoted 
by shape, in the order: dots (1,5), squares (2,6), diamonds (3,7), and 
triangles (4,8). 

Hot {29.0, 35.5,41.2, 38.5, 30.2, 35.1, 39.1, 35.0,48.7,42.9}°C 

Cold {-46.8, - 4 5 . 0 , - 4 6 . 8 , - 4 9 . 1 , - 4 5 . 7 , - 4 7 . L 

_ 42.8, - 4 4 . 1 , - 3 3 . 2 , -37 .0} °C 

The results in Sec. IV.A show that the periodic thermal state does 
not reach these extreme temperatures, which could endanger the 
performance of the satellite. 

A. Jacobian Matrix and Periodic Solution 

We compute the averages {Qt} and substitute forthem and the data 
set {Ktj, Rtj, Rt} in Eq. (4) to find the steady-state temperatures. The 
results are given in Table 1. Then, according to Eqs. (6) and (7), the 
Jacobian matrix is (in s_1) 

/ = io-3 

-6.99 
2.64 
0.12 
1.83 
1.61 
2.27 
2.56 

0 
0 
0 

1.18 
-12.93 

1.17 
0.12 
1.01 
1.59 
2.06 
9.43 

0 
0 

0.12 
2.64 

-6.99 
1.83 
1.61 
2.27 
2.56 

0 
0 
0 

1.83 
0.26 
1.83 

-7.64 
1.61 
2.27 
2.56 

0 
0 
0 

0.95 
1.33 
0.95 
0.95 

-8.26 
0 

0.15 
0 
0 

0.21 

0.67 
1.06 
0.67 
0.67 

0 
-9.20 
0.31 

0 
0 
0 

1.52 
2.75 
1.52 
1.52 
0.16 
0.64 

-15.60 
0 

0.56 
0.43 

0 
2.04 

0 
0 
0 
0 
0 

-10.05 
0 
0 

0 
0 
0 
0 
0 
0 

2.29 
0 

-0.56 
0 

0 ^ 
0 
0 
0 

1.53 
0 

3.05 
0 
0 

-0.64 j 

By inspection, one can check that it has nonnegative off-diagonal and negative diagonal elements, that is to say, 
diagonally dominant, namely, \JU\ > Xi/Jil^i;!- The eigenvalues of J are 

-J is a Z matrix. It is also 



- 1(T4{182.20, 154.30,103.40, 98.03, 86.12, 

71.09,71.04,14.90,5.70,1.72} 

Their inverses (in absolute value) give us the typical relaxation 
times of the corresponding thermal modes. Thus, we deduce that 
relaxation time of the fastest mode is about 55 s, whereas the 
relaxation time of the slowest one is 5813 s. The latter time is similar 
to T = 6660 s. 

The eigenvalues are real numbers and, furthermore, J is 
diagonalizable, because the eigenvalues are different. Both 
properties also follow from Cl/2JC~l/2 being almost symmetric: 
its antisymmetric part, SA = (Cl/2JC-l/2 - C-l/2J'Cl/2)/2, is 
relatively small, namely, ||<5A||/||C1/2/C~1/2|| < 10~3, where the 
matrix norm is the Frobenius norm (other standard matrix norms 
yield similar values). Therefore, the notion of "radiation 
conductance" (Sec. II.B) is appropriate in this case, as concerns its 
use in the linear equations. The thermal modes are almost normal, 
namely, the eigenvector matrix P is such that P'CP = I with an 
error < 0.002. The most interesting eigenvector of J is, of course, the 
positive (Perron) eigenvector, which corresponds to the slowest 
mode. The normalized positive eigenvector is 

(0.259, 0.276, 0.259, 0.257, 0.275, 0.267, 0.327, 

0.264,0.471,0.423) K 

Note that the temperature increments are of a similar magnitude, 
except the ones of node 7 and, especially, nodes 9 and 10, which are 
associated, respectively, for the tray and the boxes of electronic 
equipment. The next mode, corresponding to the eigenvalue 
—5.70 • 10~4, has one negative component (the ninth), and the 
remaining modes have more than one. 

To calculate T?^(t), we choose the Fourier series of Eq. (27) or, 
rather, the inverse discrete Fourier transform of Eq. (28), which can 
be computed with a FFT algorithm. The Fourier coefficients F(m) 
can also be computed with the FFT, according to Eq. (26). Once the 
vector 77ft at the 111 positions is available, the set of nodal 
temperatures corresponding to the first-order perturbative solution is 
Tf°(t) = fi +T^)t(t),i = 1 , . . . , 10, plotted in Fig. 5. A measure of 

the accuracy of this perturbative calculation is given by the second-
order calculation in the next section. The truncation of the Fourier 
series imposed by the sampling of F also is a source of error, 
unrelated to perturbation theory. The piecewise smoothness of the 
function T9^.(t) suggests that the error is small (but see Sec. IV.B). 

It is also interesting to see if the first-order perturbative calculation 
is affected by neglecting the fastest modes: according to the analysis 
at the end of Sec. II.A, these modes are expected to contribute in 
proportion to their relaxation times. The fastest mode relaxes in 
about 55 s, a short but nonnegligible time. As a consequence, its 
contribution to 77ft, which we find to have a maximum magnitude of 
0.8 K, is small but nonnegligible. But we can deduce that still faster 
modes, which would appear in a thermal model of the satellite with 
more nodes, are hardly necessary. 

From the engineering standpoint, note that this satellite thermal 
model is successful, insofar as it predicts that all nodal temperatures 
stay within adequate ranges. In particular, nodes 9 and 10, 
corresponding to the boxes with electronic equipment, stay within 
the range from 4 to 23°C. These nodes are inner nodes with large 
thermal capacity and, hence, are protected against the larger changes 
in the external heat inputs. In contrast, the outer nodes are very 
exposed and undergo considerable variation in temperature, with 
especially sharp changes at the beginning and end of the eclipse. 

According to Sec. II.A, the second-order perturbative correction 
77X to the periodic stationary solution is obtained by the same 
procedure as that for 77ft, but using a different driving function G that 
is computed from T and from 77ft itself. The computations are 
straightforward and they yield the correction plotted in Fig. 6. This 
correction is always negative, because the negative term in the 
expression for G, Eq. (13), dominates over the positive term. 
Equation (10) for Tftft and the corresponding equation for 77ft are 
both linear, so Tftft and 77ft are proportional to the respective driving 
functions; and we can compare their magnitudes by comparing 
those driving functions, say, comparing typical values of Q and 
6RiTiT^s'i. This latter quantity can be roughly estimated as 

6 • 2 • 10-9 • 3002 • 202 W ~ 0.4 W, whereas Q ~ 10 W (Table 1). 
Their ratio is about 25, which roughly agrees with the ratio of T9R to 
77ft, as can be seen by comparing Figs. 5 and 6. 

1f° (°C) 
30-

b) nodes 6-10 
Fig. 5 Variation of the ten nodal temperatures with time t (in minutes). 
For both plots, the node order is: dots (1,6), squares (2,7), diamonds (3,8), 
upward triangles (4,9), and downward triangles (5,10). 
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Fig. 6 Second-order correction to the temperatures (same node order 
as in Fig. 5). 



The order of magnitude of the second-order correction suggests 
that higher orders are not necessary, as we show next. 

B. Direct Integration of the Nonlinear Equations 

Of course, the periodic solution T°° (t) can also be obtained by 
direct integration of the nonlinear Eqs. (1) with an adequate solver, 
based on Runge-Kutta or other methods [13]. Since the nonlinear 
analysis proves that the solution of Eqs. (1) will converge to the 
stationary periodic solution [9], the numerical solver must be run 
until this periodicity is established. Periodicity can be enforced by 
comparing the nodal temperatures at the beginning and the end of 
every period and demanding that they be equal, within some 
tolerance. To do this, ESATAN provides the routine SOLCYC [14]. 
We have employed this routine to obtain the nonlinear equations' 
cyclic solution (which is established in 10 periods if the tolerance is 
set to 0.001). 

To compare the cyclic solution obtained by the linear method with 
the "exact" solution T°°{t) obtained by SOLCYC, we quantify the 
deviation by the vector of errors 

AT(t) = r»(r) - [f + T$(t) + r » ( 0 ] 

The largest components of AT are plotted in Fig. 7 (the remaining 
components stay in the range [—0.1,0.1]°C). There seem to be two 
branches for each node, but, in fact, it is an effect produced by the 
high-frequency oscillations of each AT^t). Notice that the error is 
generally small when compared with T^Ai); namely, |Ar ( f ) | <£ 
|r2K(0l for e a c n t = kT/n, k = 0 , . . . , n — 1, except near the two 
positions corresponding to the beginning and end of the eclipse, 
where the heat inputs have discontinuities (Fig. 4). These 
discontinuities induce oscillations of certain amplitude about the 
true values of T°°(t), due to the Gibbs phenomenon in the discrete 
Fourier transform (Sec. III). To suppress the oscillations, we would 
need a specific method for treating the Gibbs phenomenon; for 
example, we could use a smoother method for Fourier series 
summation, such as Cesaro summation [19]. 

V. Scalability and Complexity of the Linear Method 
The ten-node model studied in Sec. IV is too small to pose a 

computational problem, whether we employ the linear method or 
directly integrate nonlinear Eqs. (1). To assess the practical 
applicability of the linear method, we must study how it scales to 
realistic sizes and then compare it with the direct integration of 
Eqs. (1). Naturally, the first step in the method is to compute the 
steady-state temperature Tt, but this computation, arguably, is not a 
substantial part of the whole process and we do not consider it (it may 
take, say, between a few percent and one fifth of the whole process, 
depending on the circumstances). The size of an orbiting spacecraft 
thermal model can be scaled with respect to the number of nodes, N, 
or the number of different positions in the orbit, n. However, while 
realistic models must have many nodes, an n of about 100 can 
generally be suitable. Note, in particular, that the condition that 
N <£ n in the ten-node model is likely to be reversed in realistic 

AT; (K) nodes 1, 3 and 8 

Fig. 7 The error in the temperature computed up to the second order. 
Only showing nodes 1 (dots), 3 (squares), and 8 (diamonds), which give 
rise to the largest errors. 

models. For these reasons, the scaling with respect to N is 
more relevant. 

For the moment, let us neglect any special feature of Eqs. (1), such 
as possible coefficient sparsity. Then, the computational complexity 
of numerically integrating those equations is of order N2k, where k is 
the number of time steps taken. On the other hand, the complexity of 
the numerical integration of linear Eqs. (5) is also of order N2k 
[excluding the computation of / ( / ) ] • We can employ the explicit 
integral, Eq. (8), which can be calculated with the trapezoidal rule, 
for example, but this does not reduce the complexity of the 
computation. However, for the stationary solution, Eq. (10), its 
expression as an integral over a period T sets the number of time 
steps to n, which is advantageous if n < k, where k now is the number 
of steps necessary for some initial temperatures to relax to the 
stationary solution. Since we have to evaluate the integral in Eq. (10) 
for several times t, it is preferable to use the EFT, as discussed in 
Sec. Ill, so that the total operation count is of order N2n log n. 

However, we have not taken into account matrix operations of 
considerable complexity. For example, the discrete Fourier 
transform, Eq. (27), involves the inverse of an N x N matrix (—J 
plus a multiple of the identity matrix), and the inversion of a matrix is 
generally a process of order A'3 [20]. If we have to employ a process 
of order A'3, we may as well diagonalize J, because the 
diagonalization of a matrix also is generally a process of order A'3 

[20] and the diagonalization of J has several uses. Let us assume that 
we carry out this diagonalization and determine the independent 
thermal modes, which can then be employed to express Eq. (10) as 
Eq. (11) or to simplify the matrix operations in Eq. (27). If we roughly 
compare the computational complexity of order A'3 with the 
numerical integration complexity of order N2k, we deduce that the 
diagonalization is worthwhile when N < k. Using the preceding 
estimate n ~ 100 and taking as relaxation time k^5n (the rough 
value for the ten-node model), we deduce that the determination of 
thermal modes can be useful just as a computational procedure for 
models with a few hundred nodes. 

Let us now consider that J is surely a sparse matrix, so iterative 
matrix methods can take advantage of this characteristic. In fact, 
there are two degrees of sparsity in J, associated with conduction or 
radiation coupling terms. The conductance matrix K has to be very 
sparse, because conduction is a local process, so each node can only 
be coupled to a few nodes. In contrast, radiation is a nonlocal process 
and couples any pair of nodes that has a nonvanishing view factor. In 
addition to the different sparsity of conduction and radiation 
coupling matrices, there are two other circumstances that make them 
different: 1) we are assuming that the conductive coupling matrix just 
depends on material properties, so it is independent of the reference 
temperatures Tt, and 2) the conduction coupling terms are 
significantly larger than the radiation coupling terms for the natural 
values of those temperatures. All of this suggests separating the 
conduction and radiation parts of J, and then diagonalizing the 
conduction part. 

Based on the study in Sec. II.B, the diagonalization of the 
conduction part of J boils down to the diagonalization of the 
(generalized) Laplacian matrix — C~l/2KC~1/2, and this matrix is 
sparse. Suitable iterative algorithms to perform this diagonalization 
are, for example, the Lanczos [21] or the Davidson [22] algorithms. 
These algorithms are particularly useful when only a few of the 
largest or smallest eigenvalues are needed. This is indeed our case, as 
only the slower modes are expected to contribute to T?Z and T^. 
Once the conduction part of J has been diagonalized, in the sense that 
the lowest eigenvalues and eigenvectors of the corresponding 
Laplacian matrix are known, the radiation part of J can be treated as a 
perturbation, using matrix perturbation methods [16,21]. 

Iterative matrix methods, combined with matrix perturbation 
methods or other methods, if necessary, can reduce the order A'3 to A'2 

or even to almost linear and so allow us to diagonalize the Jacobians 
for the largest values of A' that appear in current thermal spacecraft 
models. Of course, the sparsity of thermal coupling matrices also 
facilitates the direct integration of the nonlinear Eqs. (1). However, 
their nonlinearity prevents one from taking advantage of the 



preceding approximations methods, for example, the reduction to the 
small subspace of slow modes, or the splitting into conduction and 
radiation in which the latter is treated as a matrix perturbation. 
Moreover, the linearization is useful in various respects. For 
example, the overall relaxation time, given by the eigenvalue of 
smallest magnitude, can be effectively bounded by inequalities [23] 
and some of these bounds can be found with little computational 
effort. 

VI. Conclusions 
We have studied the evolution of the thermal state of an orbiting 

spacecraft and developed a linear approach to this problem that is 
based on a rigorous perturbative treatment of the exact nonlinear 
equations. The first-order perturbation equations, Eqs. (5), constitute 
the basic linear system, which can be applied to higher orders after 
calculating the corresponding driving terms. As the Jacobian matrix 
of the nonlinear equations has negative eigenvalues, the linear 
equations describe the relaxation to a stationary thermal state, 
namely, a periodic solution that is independent of the initial 
conditions and only depends on the external heat input. This 
relaxation is similar to the relaxation to steady state under constant 
external heat load. 

We have shown that the perturbative treatment reveals the scope of 
a common linearization procedure of a heuristic nature, in which the 
nonlinear equations are rendered linear by the definition of radiation 
conductances (Sec. II.B). If one previously calculates, with the 
correct nonlinear Eqs. (4), the reference steady-state condition that 
corresponds to the average external heat input, the deviation from 
that steady state is well approximated by the linear equations with 
radiation conductances. The Jacobian matrix corresponding to 
radiation conductances, obtained in Eqs. (16) and (17), is related to a 
symmetric matrix and, therefore, is easier to diagonalize. 
Furthermore, this relation implies that the thermal modes are 
normal, like the vibrational modes of a mechanical system. Although 
the notion of radiation conductance is just an approximation, it serves 
nonetheless to show that the Jacobian matrix is diagonalizable and 
has real eigenvalues. 

The diagonalization of the Jacobian matrix is useful for the 
computation of the stationary thermal state and also provides 
information on the relaxation to that state, because the relaxation 
times of the thermal modes are the inverses of the eigenvalues. These 
times span a considerable range, but the longest times are much more 
significant than the shortest times, because the latter depend on the 
details of the lumped-parameter thermal model employed whereas 
the former are essentially independent of it. In fact, a thermal model 
that has more nodes and therefore more details also has more thermal 
modes; but the slowest modes, which correspond to temperature 
changes in large parts of the spacecraft, are hardly affected by the 
details, whereas the fast modes can be significantly altered. The 
slowest mode, in particular, corresponds to a simultaneous but 
nonuniform increase (or decrease) of the temperature throughout the 
spacecraft and is hardly altered by small-scale changes. 

The computation of the stationary thermal state with the linear 
method relies on an explicit integral, Eq. (10), or a Fourier expansion, 
Eq. (27). Given a sampling of the thermal driving function at equal 
time intervals, the periodic solution can be obtained through two 
discrete Fourier transforms: a direct transform to get the Fourier 
coefficients of the driving function and an inverse transform of the 
coefficient vector multiplied by a suitable matrix (Sec. III). Of 
course, the discrete Fourier transforms are best performed with a fast 
Fourier transform algorithm. This computation is more efficient than 
the numerical computation of the integral, Eq. (10), if we need the 
values of the temperatures at all the given sampling times. However, 
the Fourier transform presents the Gibbs phenomenon, associated 
with sudden variations of the heat loads, as occur at eclipse times, for 
example. The Gibbs phenomenon introduces errors, but these errors 
could be suppressed with special methods. 

The computation of the thermal modes and the stationary thermal 
state for a satellite ten-node thermal model confirms the validity of 
the linear method for a minimal but realistic model. The relaxation 

times span a considerable range, between 55 s and nearly 100 min. Of 
course, the latter time must be almost independent of the particular 
thermal model used, whereas the former has no intrinsic significance, 
and, if the number of nodes grew, that time would shrink (thus further 
expanding the range of relaxation times). The slowest mode 
corresponds to node temperature increments with the same sign 
(positive by convention), whereas the increments corresponding to 
other modes have both signs. The periodic variation in the external 
heat input (Fig. 4) excites the thermal modes and produces a definite 
pattern of stationary temperature oscillations, well approximated by 
the first-order solution (Fig. 5). The second-order correction is small 
compared to the first-order solution, but it is worth computing, as it 
reaches 1.7 K. Higher-order corrections are essentially negligible, 
but the error due to the Gibbs phenomenon at the eclipse positions 
reaches 0.6 K (at the most). 

Focusing on the computational aspects of the linear approach, we 
have studied how it scales with the number N of nodes and the 
number n of sampling positions on the orbit. If the Jacobian matrix is 
dense, the complexity of the corresponding matrix operations is of 
order A'3. It is convenient to employ just one matrix operation, 
namely, the diagonalization of the Jacobian matrix, because then 
only a few of the slowest modes are needed for the remaining 
operations, so these have negligible complexity. The complexity of a 
direct numerical integration of the nonlinear equations is of order 
N2k, k being the number of time steps necessary for relaxation. For a 
low-altitude orbit, k is expected to be on the order of 1000, as for our 
moon-orbiting satellite. Therefore, the linear method would be 
computationally effective as just an integration method only for 
models with a few hundred nodes. At any rate, the Jacobian matrix 
can be assumed to be sparse, and its conduction part can be assumed 
to be especially sparse, in addition to being the larger part of the 
Jacobian matrix and also being independent of the orbit. As the orbit 
may be subjected to changes in the planning of a mission, a 
convenient strategy probably is to diagonalize the conduction part at 
the outset and, when needed, add the radiation part within some 
approximation scheme. This strategy can be far more efficient than 
integrating the nonlinear equations each time. 

Moreover, the strength of the linear approach lies with the insight 
that it provides about the thermal behavior of the spacecraft, as 
embodied by the decomposition of its thermal modes, of which only 
the slowest ones are significant. These significant modes can actually 
be obtained with a reduced thermal model using few nodes. 
Therefore, the linear approach is especially useful in the context of 
reduced models. Furthermore, it provides a method for model 
reduction based on the mode decomposition: this decomposition can 
be used to group nodes. Indeed, there is a technique for graph 
partitioning based on the eigenvalues and eigenvectors of the 
Laplacian matrix of the graph [18,24]. According to Sec. II.B, this 
technique is applicable to the Jacobian matrix, but the details of this 
application are beyond the scope of the present paper and are left for 
future work. 

Finally, our linear approach can surely be applied to other cyclic 
heating processes that involve radiation heat transfer. 

Acknowledgments 
We thank Isabel Perez-Grande for bringing [12] to our attention. 

Kreith, R, Radiation Heat Transfer for Spacecraft and Solar Power 
Plant Design, International Textbook, Scranton, PA, 1962. 
Wingate, C. A., "Spacecraft Thermal Control," Fundamentals of Space 
Systems, edited by V. L. Pisacane, and R. G. Moore, Oxford Univ. Press, 
New York, 1994. 
Gilmore, D. G. (ed.), Spacecraft Thermal Control Handbook, 
Aerospace, El Segundo, CA, 2002. 
Savage, C. J., "Thermal Control of Spacecraft," Spacecraft Systems 
Engineering, edited by P. Fortescue, J. Stark, and G. Swinerd, 3rd ed., 
Wiley, Chichester, England, U.K., 2003. 
Oshima, K., and Oshima, Y., "An Analytical Approach to the Thermal 
Design of Spacecrafts," Inst, of Space and Aeronautical Science of 
Tokio, Rept. No. 419, 1968. 



Tsai, J.-R., "Overview of Satellite Thermal Analytical Model," Journal 
of Spacecraft and Rockets, Vol. 41, No. 1, 2004, pp. 120-125. 
doi:10.2514/1.9273 
Perez-Grande, I., Sanz-Andres, A., Guerra, C , and Alonso, G., 
"Analytical Study of the Thermal Behaviour and Stability of a Small 
Satellite," Applied Thermal Engineering, Vol. 29, Nos. 11-12, 2009, 
pp. 2567-2573. 
doi:10.1016/j.applthermaleng.2008.12.038 
Gaite, J., Sanz-Andres, A., and Perez-Grande, I., "Nonlinear Analysis 
of a Simple Model of Temperature Evolution in a Satellite," Nonlinear 
Dynamics, Vol. 58, Nos. 1-2, 2009, pp. 405^15. 
doi:10.1007/sll071-009-9488-x 
Gaite, J., "Nonlinear Analysis of Spacecraft Thermal Models," 
Nonlinear Dynamics, Vol. 65, No. 3, 2011, pp. 283-300. 
doi:10.1007/sl 1071-010-9890-4 
Krishnaprakas, C. K., "Application of Accelerated Iterative Methods for 
Solution of Thermal Models of Spacecraft," Journal of Spacecraft and 
Rockets, Vol. 32, No. 4, 1995, pp. 608-611. 
doi:10.2514/3.26660 
Krishnaprakas, C. K., "Efficient Solution of Spacecraft Thermal 
Models Using Preconditioned Conjugate Gradient Methods," Journal 
of Spacecraft and Rockets, Vol. 35, No. 6, 1998, pp. 760-764. 
doi:10.2514/2.3413 
Milman, M., and Petrick, W., "A Note on the Solution of a Common 
Thermal Network Problem Encountered in Heat-Transfer Analysis of 
Spacecraft," Applied Mathematical Modelling, Vol. 24, No. 12, 2000, 
pp. 861-879. 
doi:10.1016/S0307-904X(00)00021-4 
Krishnaprakas, C. K., "A Comparison of ODE Solution Methods for 
Spacecraft Thermal Problems," Heat transfer engineering, Vol. 19, 

No. 3, 1998, pp. 103-109. 
doi:10.1080/01457639808939930 
ESATAN-TMS Thermal Engineering Manual and User Manual, FTP 
Engines U.K., Whetstone, Leicester, England, U.K., 2009. 
Berman, A., and Plemmons, R. J., Nonnegative Matrices in the 
Mathematical Sciences, SIAM, Philadelphia, 1994. 
Hinch, E. J., Perturbation Methods, Univ. of Cambridge, Cambridge, 
England, U.K., 1991. 
Chung, F. R. K., Spectral Graph Theory, American Math. Society, 
Providence, RI, 1997. 
Biyikoglu, T, Leydold, J., and Stadler, P. ¥.,Laplacian Eigenvectors of 
Graphs: Perron-Frobenius and Faber-Krahn Type Theorems, Lecture 
Notes in Mathematics 1915, Springer, New York, 2007. 
Davis, H. E, Fourier Series and Orthogonal Functions, Dover, New 
York, 1989. 
Press, W. H., Teukolsky, S. A., Vetterling, W. T, and Flannery, B. P., 
Numerical Recipes: The Art of Scientific Computing, 3rd ed., 
Cambridge Univ. Press, New York, 2007. 
Golub, G. H., and Van Loan, C. E, Matrix Computations, Johns 
Hopkins Univ. Press, Baltimore, MD, 1996. 
Crouzeix, M., Philippe, B., and Sadkane, M., "The Davidson Method," 
SIAM Journal on Scientific Computing, Vol. 15, No. 1,1994, pp. 62-76. 
doi:10.1137/0915004 
Tian, G.-X., and Huang, T.-Z., "Inequalities for the Minimum 
Eigenvalue of M-Matrices," Electronic Journal of Linear Algebra, 
Vol. 20, 2010, pp. 291-302. 
Luxburg, U , "A Tutorial on Spectral Clustering," Statistics and 
Computing, Vol. 17, No. 4, 2007, pp. 395^16. 
doi:10.1007/sll222-007-9033-z 


