We develop a linear method for solving the nonlinear differential equations
of a lumped-parameter thermal model of a spacecraft moving in a closed orbit.
Our method, based on perturbation theory, is compared with heuristic
linearizations of the same equations. The essential feature of the linear
approach is that it provides a decomposition in thermal modes, like the
decomposition of mechanical vibrations in normal modes. The stationary periodic
solution of the linear equations can be alternately expressed as an explicit
integral or as a Fourier series. We apply our method to a minimal thermal model
of a satellite with ten isothermal parts (nodes) and we compare the method with
direct numerical integration of the nonlinear equations. We briefly study the
computational complexity of our method for general thermal models of orbiting
spacecraft and conclude that it is certainly useful for reduced models and
conceptual design but it can also be more efficient than the direct integration
of the equations for large models. The results of the Fourier series
computations for the ten-node satellite model show that the periodic solution
at the second perturbative order is sufficiently accurate.Comment: 20 pages, 11 figures, accepted in Journal of Thermophysics and Heat
Transfe