17 research outputs found

    Overview of the RFX Fusion Science Program

    No full text
    With a program well-balanced among the goal of exploring the fusion potential of the reversed field pinch (RFP) and that of contributing to the solution of key science and technology prob- lems in the roadmap to ITER, the European RFX-mod device has produced a set of high-quality results since the last 2010 Fusion Energy Conference. RFX-mod is a 2 MA RFP, which can also be operated as a tokamak and where advanced confinement states have 3D features studied with stellarator tools. Self-organized equilibria with a single helical axis and improved confinement (SHAx) have been deeply investigated and a more profound understanding of their physics has been achieved. First wall conditioning with Lithium provides a tool to operate RFX at higher density than before, and application of helical magnetic boundary conditions favour stationary SHAx states. The correlation between the quality of helical states and the reduction of magnetic field errors acting as seed of magnetic chaos has been robustly proven. Helical states provide a unique test-bed for numerical codes conceived to deal with 3D effects in all magnetic configura- tions. In particular the stellarator equilibrium codes VMEC and V3FIT have been successfully adapted to reconstruct RFX-mod equilibria with diagnostic input. The border of knowledge has been significantly expanded also in the area of feedback control of MHD stability. Non-linear dynamics of tearing modes and their control has been modelled, allowing for optimization of feedback models. An integrated dynamic model of the RWM control system has been developed integrating the plasma response to multiple RWMs with active and passive conducting structures (CarMa model) and with a complete representation of the control system. RFX has been oper- ated as a tokamak with safety factor kept below 2, with complete active stabilization of the p2, 1q Resistive Wall Mode (RWM). This opens the exploration of a broad and interesting operational range otherwise excluded to standard tokamaks. Control experiments and modelling led to the design of a significant upgrade of the RFX-mod feedback control system to dramatically enhance computing power and reduce system latency. The possibility of producing D-shaped plasmas is being explore

    Measurement of the cross section ratio sigma(t(t)over-barb(b)over-bar)/sigma(t(t)over-barjj) in pp collisions at root s=8 TeV

    No full text
    The first measurement of the cross section ratio sigma(t (t) over barb (b) over bar)/sigma(t (t) over bar jj) is presented using a data sample corresponding to an integrated luminosity of 19.6 fb(-1) collected in pp collisions at root s = 8 TeV with the CMS detector at the LHC. Events with two leptons (e or mu) and four reconstructed jets, including two identified as b quark jets, in the final state are selected. The ratio is determined for a minimum jet transverse momentum p(T) of both 20 and 40 GeV/c. The measured ratio is 0.022 +/- 0.003 (stat) +/- 0.005 (syst) for p(T) > 20GeV/c. The absolute cross sections sigma(t (t) over barb (b) over bar) and sigma(t (t) over bar jj) are also measured. The measured ratio for p(T) > 40 GeV/c is compatible with a theoretical quantum chromodynamics calculation at next-to-leading order. (C) 2015 CERN for the benefit of the CMS Collaboration

    Search for pair production of third-generation scalar leptoquarks and top squarks in proton-proton collisions at v root s=8 TeV

    No full text
    A search for pair production of third-generation scalar leptoquarks and supersymmetric top quark partners, top squarks, in final states involving tau leptons and bottom quarks is presented. The search uses events from a data sample of proton-proton collisions corresponding to an integrated luminosity of 19.7 fb(-1), collected with the CMS detector at the LHC with root s = 8 TeV. The number of observed events is found to be in agreement with the expected standard model background. Third-generation scalar leptoquarks with masses below 740 GeV are excluded at 95% confidence level, assuming a 100% branching fraction for the leptoquark decay to a tau lepton and a bottom quark. In addition, this mass limit applies directly to top squarks decaying via an R-parity violating coupling. lambda(') (333). The search also considers a similar signature from top squarks undergoing a chargino-mediated decay involving the Rparity violating coupling. lambda(')(3jk). Each top squark decays to a tau lepton, a bottom quark, and two light quarks. Top squarks in this model with masses below 580 GeV are excluded at 95% confidence level. The constraint on the leptoquark mass is the most stringent to date, and this is the first search for top squarks decaying via. lambda(')(3jk)

    Performance of the CMS missing transverse momentum reconstruction in pp data at √s= 8 TeV

    No full text
    The performance of missing transverse energy reconstruction algorithms is presented using root s = 8 TeV proton-proton (pp) data collected with the CMS detector. Events with anomalous missing transverse energy are studied, and the performance of algorithms used to identify and remove these events is presented. The scale and resolution for missing transverse energy, including the effects of multiple pp interactions (pileup), are measured using events with an identified Z boson or isolated photon, and are found to be well described by the simulation. Novel missing transverse energy reconstruction algorithms developed specifically to mitigate the effects of large numbers of pileup interactions on the missing transverse energy resolution are presented. These algorithms significantly reduce the dependence of the missing transverse energy resolution on pileup interactions. Finally, an algorithm that provides an estimate of the significance of the missing transverse energy is presented, which is used to estimate the compatibility of the reconstructed missing transverse energy with a zero nominal value

    Measurement of the production cross section ratio sigma(chi b2(1P))/sigma(chi b1(1P)) in pp collisions at root s=8TeV

    No full text
    A measurement of the production cross section ratio sigma(chi b2(1P))/sigma(chi b1(1P)) is presented. The chi b1 (1P) and chi b2 (1P) bottomonium states, promptly produced in pp collisions at root s = 8TeV, are detected by the CMS experiment at the CERN LHC through their radiative decays chi b1,2(1P) -> Y(1S) + gamma. The emitted photons are measured through their conversion to e(+) e(-) pairs, whose reconstruction allows the two states to be resolved. The Y(1S) is measured through its decay to two muons. An event sample corresponding to an integrated luminosity of 20.7 fb(-1) is used to measure the cross section ratio in a phase-space region defined by the photon pseudorapidity, vertical bar eta(gamma)vertical bar < 1.0; the Y(1S) rapidity, vertical bar y(Y)vertical bar < 1.5; and the Y(1S) transverse momentum, 7 < p(T)(Y) < 40 GeV. The cross section ratio shows no significant dependence on the.(1S) transverse momentum, with a measured average value of 0.85 +/- 0.07 (stat + syst) +/- 0.08 (BF), where the first uncertainty is the combination of the experimental statistical and systematic uncertainties and the second is from the uncertainty in the ratio of the chi b branching fractions

    Search for a standard model-like Higgs boson in the mu(+)mu(-) and e(+)e(-) decay channels at the LHC

    No full text
    A search is presented for a standard model-like Higgs boson decaying to the mu(+)mu(-) or e(+)e(-) final states based on proton-proton collisions recorded by the CMS experiment at the CERN LHC. The data correspond to integrated luminosities of 5.0 fb(-1) at a centre-of-mass energy of 7 TeV and 19.7 fb(-1) at 8 TeV for the mu(+)mu(-) search, and of 19.7 fb(-1) at 8 TeV for the e(+)e(-) search. Upper limits on the production cross section times branching fraction at the 95% confidence level are reported for Higgs boson masses in the range from 120 to 150 GeV. For a Higgs boson with a mass of 125 GeV decaying to mu(+)mu(-), the observed (expected) upper limit on the production rate is found to be 7.4 (6.5(-1.9)(+2.8)) times the standard model value. This corresponds to an upper limit on the branching fraction of 0.0016. Similarly, for e(+)e(-), an upper limit of 0.0019 is placed on the branching fraction, which is approximate to 3.7 x 10(5) times the standard model value. These results, together with recent evidence of the 125 GeV boson coupling to tau-leptons with a larger branching fraction consistent with the standard model, confirm that the leptonic couplings of the new boson are not flavour-universal

    Search for excited quarks in the gamma plus jet final state in proton-proton collisions at root s=8 TeV

    No full text
    A search for excited quarks decaying into the gamma + jet final state is presented. The analysis is based on data corresponding to an integrated luminosity of 19.7 fb(-1) collected by the CMS experiment in proton-proton collisions at root s = 8 TeV at the LHC. Events with photons and jets with high transverse momenta are selected and the gamma + jet invariant mass distribution is studied to search for a resonance peak. The 95% confidence level upper limits on the product of cross section and branching fraction are evaluated as a function of the excited quark mass. Limits on excited quarks are presented as a function of their mass and coupling strength; masses below 3.5 TeV are excluded at 95% confidence level for unit couplings to their standard model partners

    Measurement of the t(t)over-bar production cross section in pp collisions at root s=8 TeV in dilepton final states containing one tau lepton

    No full text
    The top-quark pair production cross section is measured in final states with one electron or muon and one hadronically decaying tau lepton from the process t (t) over bar -> (l nu(l))(tau nu(tau))b (b) over bar, where l = e, mu. The data sample corresponds to an integrated luminosity of 19.6 fb(-1) collected with the CMS detector in proton-proton collisions at root s = 8 TeV. The measured cross section sigma(t (t) over bar) = 257 +/- 3 (stat) +/- 24 (syst) +/- 7 (lumi) pb, assuming a top-quark mass of 172.5 GeV, is consistent with the standard model prediction

    Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs

    No full text
    Constraints are presented on the total width of the recently discovered Higgs boson, Gamma(H), using its relative on-shell and off-shell production and decay rates to a pair of Z bosons, where one Z boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The analysis is based on the data collected by the CMS experiment at the LHC in 2011 and 2012, corresponding to integrated luminosities of 5.1 fb(-1) at a center-of-mass energy root s = 7 TeV and 19.7 fb(-1) at root s = 8 TeV. A simultaneous maximum likelihood fit to the measured kinematic distributions near the resonance peak and above the Z-boson pair production threshold leads to an upper limit on the Higgs boson width of Gamma(H) < 22 MeV at a 95% confidence level, which is 5.4 times the expected value in the standard model at the measured mass of m(H) = 125.6 GeV

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    No full text
    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For t (t) over bar events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p(T) > 0.9GeV is 94% for pseudorapidities of vertical bar eta vertical bar < 0.9 and 85% for 0.9 < vertical bar eta vertical bar < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p(T) = 100GeV emitted at vertical bar eta vertical bar < 1.4, the resolutions are approximately 2.8% in p(T), and respectively, 10 m m and 30 mu m in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10-12 mu m in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung
    corecore