5,545 research outputs found

    Spin-phonon induced magnetic order in Kagome ice

    Get PDF
    We study the effects of lattice deformations on the Kagome spin ice, with Ising spins coupled by nearest neighbor exchange and long range dipolar interactions, in the presence of in-plane magnetic fields. We describe the lattice energy according to the Einstein model, where each site distortion is treated independently. Upon integration of lattice degrees of freedom, effective quadratic spin interactions arise. Classical MonteCarlo simulations are performed on the resulting model, retaining up to third neighbor interactions, under different directions of the magnetic field. We find that, as the effect of the deformation is increased, a rich plateau structure appears in the magnetization curves.Comment: 7 pages, 8 figure

    Equilibrium and Disorder-induced behavior in Quantum Light-Matter Systems

    Full text link
    We analyze equilibrium properties of coupled-doped cavities described by the Jaynes-Cummings- Hubbard Hamiltonian. In particular, we characterize the entanglement of the system in relation to the insulating-superfluid phase transition. We point out the existence of a crossover inside the superfluid phase of the system when the excitations change from polaritonic to purely photonic. Using an ensemble statistical approach for small systems and stochastic-mean-field theory for large systems we analyze static disorder of the characteristic parameters of the system and explore the ground state induced statistics. We report on a variety of glassy phases deriving from the hybrid statistics of the system. On-site strong disorder induces insulating behavior through two different mechanisms. For disorder in the light-matter detuning, low energy cavities dominate the statistics allowing the excitations to localize and bunch in such cavities. In the case of disorder in the light- matter coupling, sites with strong coupling between light and matter become very significant, which enhances the Mott-like insulating behavior. Inter-site (hopping) disorder induces fluidity and the dominant sites are strongly coupled to each other.Comment: about 10 pages, 12 figure

    Non-Abelian fractional quantum Hall states and chiral coset conformal field theories

    Full text link
    We propose an effective Lagrangian for the low energy theory of the Pfaffian states of the fractional quantum Hall effect in the bulk in terms of non-Abelian Chern-Simons (CS) actions. Our approach exploits the connection between the topological Chern-Simons theory and chiral conformal field theories. This construction can be used to describe a large class of non-Abelian FQH states.Comment: Revised manuscript, 17 pages; new section discusses parafermion state

    Fractal Fidelity as a signature of Quantum Chaos

    Full text link
    We analyze the fidelity of a quantum simulation and we show that it displays fractal fluctuations iff the simulated dynamics is chaotic. This analysis allows us to investigate a given simulated dynamics without any prior knowledge. In the case of integrable dynamics, the appearance of fidelity fractal fluctuations is a signal of a highly corrupted simulation. We conjecture that fidelity fractal fluctuations are a signature of the appearance of quantum chaos. Our analysis can be realized already by a few qubit quantum processor.Comment: 5 pages, 5 figure

    Engineering fidelity echoes in Bose-Hubbard Hamiltonians

    Full text link
    We analyze the fidelity decay for a system of interacting bosons described by a Bose-Hubbard Hamiltonian. We find echoes associated with "non-universal" structures that dominate the energy landscape of the perturbation operator. Despite their classical origin, these echoes persist deep into the quantum (perturbative) regime and can be described by an improved random matrix modeling. In the opposite limit of strong perturbations (and high enough energies), classical considerations reveal the importance of self-trapping phenomena in the echo efficiency.Comment: 6 pages, use epl2.cls class, 5 figures Cross reference with nlin, quant-phy

    Bond-impurity induced bound states in disordered spin-1/2 ladders

    Full text link
    We discuss the effect of weak bond-disorder in two-leg spin ladders on the dispersion relation of the elementary triplet excitations with a particular focus on the appearance of bound states in the spin gap. Both the cases of modified exchange couplings on the rungs and the legs of the ladder are analyzed. Based on a projection on the single-triplet subspace, the single-impurity and small cluster problems are treated analytically in the strong-coupling limit. Numerically, we study the problem of a single impurity in a spin ladder by exact diagonalization to obtain the low-lying excitations. At finite concentrations and to leading order in the inter-rung coupling, we compare the spectra obtained from numerical diagonalization of large systems within the single-triplet subspace with the results of diagrammatic techniques, namely low-concentration and coherent-potential approximations. The contribution of small impurity clusters to the density of states is also discussed.Comment: 9 pages REVTeX4 including 7 figures, final version; Fig. 5 modifie

    Charge and spin transport in strongly correlated one-dimensional quantum systems driven far from equilibrium

    Get PDF
    We study the charge conductivity in one-dimensional prototype models of interacting particles, such as the Hubbard and the t-V spinless fermion model, when coupled to some external baths injecting and extracting particles at the boundaries. We show that, if these systems are driven far from equilibrium, a negative differential conductivity regime can arise. The above electronic models can be mapped into Heisenberg-like spin ladders coupled to two magnetic baths, so that charge transport mechanisms are explained in terms of quantum spin transport. The negative differential conductivity is due to oppositely polarized ferromagnetic domains which arise at the edges of the chain, and therefore inhibit spin transport: we propose a qualitative understanding of the phenomenon by analyzing the localization of one-magnon excitations created at the borders of a ferromagnetic region. We also show that negative differential conductivity is stable against breaking of integrability. Numerical simulations of non-equilibrium time evolution have been performed by employing a Monte-Carlo wave function approach and a matrix product operator formalism.Comment: 20 pages, 19 figures. Published versio

    Ground state fidelity and quantum phase transitions in free Fermi systems

    Full text link
    We compute the fidelity between the ground states of general quadratic fermionic hamiltonians and analyze its connections with quantum phase transitions. Each of these systems is characterized by a L×LL\times L real matrix whose polar decomposition, into a non-negative Λ\Lambda and a unitary TT, contains all the relevant ground state (GS) information. The boundaries between different regions in the GS phase diagram are given by the points of, possibly asymptotic, singularity of Λ\Lambda. This latter in turn implies a critical drop of the fidelity function. We present general results as well as their exemplification by a model of fermions on a totally connected graph.Comment: 4 pages, 2 figure
    corecore