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Spin-phonon induced magnetic order in the kagome ice
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We study the effects of lattice deformations on the kagome spin ice, with Ising spins coupled by nearest-neighbor
exchange and long-range dipolar interactions, in the presence of in-plane magnetic fields. We describe the lattice
energy according to the Einstein model, where each site distortion is treated independently. Upon integration
of lattice degrees of freedom, effective quadratic spin interactions arise. Classical Monte Carlo simulations are
performed on the resulting model, retaining up to third neighbor interactions, under different directions of the
magnetic field. We find that as the effect of the deformation is increased, a rich plateau structure appears in the
magnetization curves.
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I. INTRODUCTION

Spin ice systems1 have been the object of intense study in
the last couple of decades. These materials are an experimental
evidence of high magnetic frustration, showing a residual low-
temperature entropy and magnetic disorder. Some compound
examples are Ho2Ti2O7 (Refs. 2 and 3) and Dy2Ti2O7 (Refs. 4
and 5), where the rare-earth ions form a lattice of corner-
sharing tetrahedra (pyrochlore lattice).

Due to intense crystal fields, spin degrees of freedom are
locally projected onto a well-isolated Ising doublet ground
state, pointing either in or out from the tetrahedra centers,
meaning that the spins can be modeled by local Ising variables.
Moreover, the transverse components of the gyromagnetic
tensor vanish due to structural reasons, thus decoupling
transverse field components and allowing for a classical
treatment of these Ising variables.6,7 The interplay between
antiferromagnetic nearest-neighbor exchange couplings and
strong dipolar interactions in these materials leads to a highly
frustrated and degenerate ground state satisfying the so-called
ice rules:8,9 two spins in and two spins out of each tetrahedron.

The magnetization curves of the pyrochlore systems
Ho2Ti2O7 (Ref. 10) and Dy2Ti2O7 (Ref. 11) show a well-
known plateau at 1/3 of saturation under an external magnetic
field in the 〈111〉 direction.12,13 Above this plateau the apical
spins are completely aligned with the external magnetic
field, which suggests that the relevant physics stems from
the transverse kagome layers. This paper is motivated by
recent experiments14,15 which have identified a plateaulike
feature above 1/3 magnetization, when the magnetic field
is slightly tilted with respect to the 〈111〉 direction. This
feature is not described by the standard model for pyrochlore
spin ice1 with only first-neighbors exchange couplings. Even
with the inclusion of further neighbor couplings16 and careful
treatment of the long-range dipolar interactions,17 this issue
remains elusive. On the other hand, it is well known that
spin lattice couplings lead to a variety of phenomena, such
as the appearance of a plateau structure in the magnetization
curves.18–20 Motivated by the need to understand the physics
above the 1/3 plateau, we have considered the influence of
the phonon degrees of freedom in the magnetic properties
of the pyrochlore. One should recall that for large spins the
effects of the phonons appear generically enhanced by an S2

factor.

In the high-field regime (above the pyrochlore 1/3 plateau)
the apical spins are aligned with the field and the remaining
physics could be described, in a first approximation, by
decoupled kagome planes. In fact, the three-dimensional
character of the pyrochlore system could be retained by
considering interlayer dipolar couplings, but this is out of the
scope of the present paper. On the other hand, our model
could be relevant in the study of artificial spin-ice systems. In
the present work we consider a kagome ice model under the
influence of a magnetic field along the plane which mimics
the tilting of the magnetic field in the experiments. We include
the effects of phonons, which induce a rich plateau structure.

The paper is organized as follows: In Sec. II we intro-
duce the kagome ice model for the effective description of
pyrochlore spins in active layers in the regime of interest,
including nearest-neighbor exchange and dipolar interactions,
and the spin interactions induced by lattice fluctuations. In
Sec. III we present magnetization curves under in-plane
magnetic fields, obtained by simulated annealing. Several
plateaus and their magnetic ordered structure are described.
Section IV is devoted to discussion and conclusions.

II. KAGOME ICE MODEL

We are interested in the description of Ising pyrochlore
systems in the regime where apical spin magnetization is
saturated. As mentioned in the Introduction, once the apical
spins of the tetrahedra are aligned with the external magnetic
field, the remaining spins lie on kagome planes. As a first step,
we do not consider the out-of (kagome)-plane components
of the spins and consider a kagome ice planar model,21

i.e., local spin directions point towards or outward from the
center of the triangles of the kagome unit cell. Each site i

allocates a local Ising spin �Si = Sσi êi , where S is the spin
magnitude, σi = ±1 is the Ising variable ( +1 being “in” and
− 1 “out”), and êi is the local reference direction (1, 2, 3 in
Fig. 1). This simplified model may also be relevant to artificial
Permalloy arrays with kagome geometry,22,23 with the proviso
that array deformations should have the same energy scale as
magnetic interactions. The standard model for pyrochlore spin
ice1 includes exchange antiferromagnetic interactions only for
nearest neighbors (N (1)) and long-range dipolar interactions;
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FIG. 1. (Color online) Kagome lattice. In red, the local reference
directions for Ising spins on each site (σi = +1 is referred to as
“in”). First-, second-, and third-nearest neighbors are indicated. On
the right, effective interactions arising from �F (1)

ij (green arrows) and
bridged by a site i are shown by dashed lines.

the Hamiltonian on the regular kagome lattice then reads

H0 = J0

∑
〈ij〉(1)

�Si · �Sj

+Da3
∑
i �=j

[ �Si · �Sj(
r0
ij

)3 − 3(�Si · r̂ij )(�Sj · r̂ij )(
r0
ij

)3

]

− �h ·
∑

i

�Si, (1)

where J0 is the antiferromagnetic N (1) exchange interaction
coupling, D is the strength of the dipolar coupling, a the
distance between nearest neighbors, r0

ij the distance between
any pair of spins at sites i and j , and r̂ij is the unit vector
from site i to site j . �h = hxx̂ + hyŷ is the external magnetic
field in the kagome plane, x̂ being perpendicular to one of
the spin directions (say 3 in Fig. 1) and ŷ parallel to it. In
the description of pyrochlore in a magnetic field mentioned
in the Introduction, a small �h would account for a deviation
of the magnetic field with respect to the 〈111〉 direction. The
out-of-plane component of the spins could be easily included,
together with the 〈111〉 component of the magnetic field
and first-neighbor coupling of kagome plane spins to frozen
apical spins. This generalization, together with its relation to
magnetization experiments in dysprosium pyrochlore,4,5 will
be considered in future work.

In order to include the effects of lattice deformations in
the magnetic order, we introduce deformations �ui in the site
positions

�ri = �r0
i + �ui, (2)

so that the distance between sites i and j is distorted from the
regular lattice. At first order

rij = |�rj − �ri | ≈ r0
ij + r̂ij · (�uj − �ui). (3)

The effect of the deformations in the exchange interaction is
taken at linear order to be isotropic,

J (rij ) ≈ J0[1 − α r̂ij · (�uj − �ui)], (4)

where α = − 1
J0

∂J
∂rij

|rij =r0
ij

> 0 is the scalar spin-phonon cou-
pling constant. Correspondingly, corrections to dipolar inter-

actions are considered at first order by varying distances in the
second line of Eq. (1).

We treat the elastic degrees of freedom in the adiabatic limit,
assuming large ion masses, which is appropriate in the case of
Dy2Ti2O7. There are different models to describe the energy
cost of lattice deformations.24 One of them is the bond phonon
model,25 describing acoustic modes where the elastic energy
depends on bond length deformation but each bond is allowed
to independently expand or contract (ignoring geometrical
constraints), i.e., variables δ�rij = �uj − �ui are independent.
We have explored the effect of these modes in the effective
description and we trivially observe that they just lead to
a constant shift in the energy. The other standard choice
is the Einstein phonon model,26 describing optical modes.
It is known that, at the nearest-neighbor level, the kagome
dispersion relations have a flatband of zero modes; however,
the presence of further neighbor couplings should lift these
modes, making the Einstein model a reliable approximation.
The elastic energy is quadratic on each site displacement and
truly independent deformations �ui can be exactly integrated.
The spin-phonon Hamiltonian reads

H = H0 +
∑

i

⎛
⎝K

2
(�ui)

2 + �ui ·
∑
j �=i

�Fij

⎞
⎠ . (5)

Here �Fij collects all terms proportional to �ui and containing
σiσj , arising from a first-order expansion of the variation of
H0 with lattice distortions (see the Appendix). In this case,
phonon degrees of freedom are easily integrated to yield an
effective Hamiltonian for the magnetic degrees of freedom
at a given temperature. In order to discuss the validity of
this integration and subsequent approximations, we set J0

as the energy scale and a as the length scale to introduce
dimensionless parameters d = D

J0
for the dipolar interaction

strength k = Ka2

J0
for the phonon stiffness, and λ = aα for the

linear spin-phonon coupling.
The standard Gaussian integration over elastic thermal

fluctuations in the presence of linear interactions assumes
that both the width and mean of the thermal distribution of
displacements given by e−βH are much smaller than the lattice
distance a. This requires for the phonon stiffness that k � kBT

J0
,

which is valid at low enough temperature T , and that the
interaction factors �Fij satisfy∣∣∣∣∣∣

∑
j �=i

�Fij

∣∣∣∣∣∣ � kJ0. (6)

The explicit expression for �Fij at first neighbors includes the
spin-phonon coupling and a dipolar term

�Fij (1) = J0S
2

a

(
− λ

2
+ 21

4
d

)
r̂ij σiσj , (7)

while the longer range �Fij (n) only includes dipolar terms
and decays with distance as 1/r4

ij . In particular, for second
neighbors one finds

�Fij (2) = −J0S
2

a

5

12
d r̂ij σiσj , (8)
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and for third neighbors the numerical factor decays to 3/16.
Taking �Fij (1) as the significative contribution, Eq. (6) requires

S2

∣∣∣∣ − λ

2
+ 21

4
d

∣∣∣∣ � k. (9)

After Gaussian integration the effective Hamiltonian reads

Heff = H0 −
∑

i

a2

2kJ0

∑
j,k neighbors of i

�Fij · �Fik. (10)

Notice that �Fij · �Fik contains σ 2
i = 1, so it is proportional to

σjσk;27 thus effective corrections to interactions between Ising
spins at sites j , k arise from the summation of �Fij · �Fik terms
in Eq. (10) over all i �= j,k. Notice also that we depict each
contribution to the interactions between sites j and k as bridged
by a site i. In this sense, when both factors �Fij and �Fik refer
to nearest neighbors, the site i bridges interactions between
first, second, and third neighbors as shown in Fig. 1. Longer-
range factors �Fij (n) give rise to increasingly long-range effective
interactions, with smaller couplings.

In order to tailor a tractable effective model, we proceed to
truncate the range of neighbors N (i) in Eq. (10). To this aim we
compare in detail the effective corrections to first-neighbors
effective Ising coupling arising only from �Fij (1) with those
including second-range factors �Fij (2) . The relative weight of
such second-range corrections is negligible if

5
√

3

6
d �

∣∣∣∣21

4
d − 1

2
λ

∣∣∣∣. (11)

Longer-range contributions from �Fij (n) are even smaller, due to
the dipolar decay. Condition (11) is largely satisfied in the
case of dysprosium pyrochlore, where λ can be estimated
to be of order 20,28 whereas values of d ≈ 1/31 as we
consider below. Thus we neglect �Fij (n) for n � 2 in what
follows.

Regarding the original long-range dipolar interactions in
H0, it is known that a truncation is more sensible in the
kagome lattice than in the pyrochlore lattice because of lower
dimensionality.22 According to the range of effective correc-
tions kept, we also truncate long-range dipolar interactions,
retaining up to third neighbors.

The truncated effective Hamiltonian finally reads

Heff

J0S2
=

⎡
⎣J

(1)
eff

∑
〈ij〉(1)

σiσj + J
(2)
eff

∑
〈ij〉(2)

σiσj

+ J
(3)
eff

∑
〈ij〉(3)

σiσj + J
(3d)
eff

∑
〈ij〉(3d)

σiσj

⎤
⎦

−
∑

i

σi[h̃x(êi)x + h̃y(êi)y], (12)

where 〈ij 〉(1), 〈ij 〉(2), 〈ij 〉(3), and 〈ij 〉(3d) refer to first N (1),
second N (2), third along triangle edges N (3), and third along
hexagon diagonals N (3d) neighbors, respectively, as depicted
in Fig. 1. The dimensionless magnetic field h̃α is defined as

hα/(J0S), with α = x,y. The effective couplings are given by

J
(1)
eff = −1

2
+ 7

4
d − δ,

J
(2)
eff = − 5

12
√

3
d + δ,

(13)

J
(3d)
eff = 1

8
d,

J
(3)
eff = − 5

32
d + 2δ,

with δ = S2

4k
(− λ

2 + 21
4 d)2. In a realistic pyrochlore setting,

the corrections to dipolar interactions at second and third
neighbors generated by phonon degrees of freedom could be
related to those included as exchange interactions in Ref. 16
for tuning diffuse elastic neutron scattering data in dysprosium
titanate.

Notice that after having integrated the phonon degrees of
freedom, the effective model to be analyzed is a pure Ising
model, but the inclusion of phonons ends up being a crucial
ingredient in establishing the relative strength of the various
couplings. This is at the root of the physics discussed in the
present paper.

III. MONTE CARLO SIMULATIONS - RESULTS
AND DISCUSSION

We analyze the effective Hamiltonian in Eq. (12) in a regime
where exchange and first-order dipolar interactions compete,
yielding a frustrating Ising interaction (J (1)

eff > 0), and where
the effective parameters J

(1)
eff and J

(2)
eff have the same order of

magnitude (strong frustration regime). To this aim we consider
d 
 1/3 for the rest of the paper. For these values of d, all
considered interactions indeed compete. It should be noticed
that J

(1)
eff is positive up to δ = 0.06, thus favoring frustration,

and J
(2)
eff remains negative up to δ ≈ 0.08 [see Eq. (13)].

We performed Monte Carlo simulations for kagome lattices
of N = 3 × L2 sites, with L = 12,18, . . . ,36, by conven-
tional single-spin flip,29 plus implementation of a tempering
algorithm (annealing technique),30 lowering the temperature
in a Ti+1 = Ti × 0.9 scheme down to the lowest value,
T = 0.0042J0S

2/kB . At every magnetic field and temperature
we discarded 2 × 106 Monte Carlo steps (MCSs) for initial
relaxation and data were collected during subsequent 4 × 106

MCSs. Monte Carlo runs for the same parameters with
different seeds gave no significant variations; thus no error
bars are reported in average magnetization data.

We focus on the low-temperature phase diagram as a
function of the single parameter δ in the presence of an external
magnetic field. To determine the different phases we computed
the normalized magnetization under magnetic fields applied
along the x̂ and ŷ direction, defined as

Mα = 1

Mα,s

N∑
i=1

(�Si)α, (14)

where α = x,y and Mα,s is the saturation magnetization
along α.
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FIG. 2. (Color online) Phase diagram hy vs δ for a 3 × L2

(L = 30) site kagome lattice. The numbers indicate the normalized
magnetization of the plateaus.

A. Magnetic field parallel to one of the spins

We first study the equilibrium average magnetization 〈My〉
under fields �h = hyŷ, from zero to saturation (〈My〉 = 1). We
performed simulations for d = 0.32 and δ from 0 to 0.1, where
the condition in Eq. (6) is satisfied, in steps of 0.001. The
resulting phase diagram is shown in Fig. 2. It should be stressed
that in all the observed plateau phases a single domain ordered
structure is found, lifting the typical residual low-temperature
entropy of pure spin-ice systems.

We find that for δ = 0, which corresponds to phonon
stiffness k → ∞ (no lattice deformations), there are two
plateaus, for 〈My〉 = 0 and 〈My〉 = 1/2 [Figs. 3(a)–3(c)].
These plateaus, present by the only effect of dipolar inter-
actions, are stable, lowering the value of k (allowing for lattice
deformations) up to δ 
 0.02, where J

(1)
eff 
 J

(3d)
eff 
 2|J eff

2 |/3
and J

(3)
eff 
 0 changes sign from negative to positive, adding

frustration to the system.
For larger δ (>0.03), there is a transition: the 1/2 plateau

“splits” into two plateaus at 〈My〉 = 1/3 and 〈My〉 = 2/3,
which widen as δ increases [Figs. 3(d)–3(f)]. Close to δ =
0.06, J

(1)
eff 
 0 and the effective system is dominated by the

third neighbors couplings with J
(3d)
eff 
 J

(3)
eff /2 and |J (2)

eff | <

J
(3)
eff /4. We recall that for δ > 0.06, J

(1)
eff is negative and does

not favor frustration; therefore the lattice configurations no
longer satisfy the kagome ice rules. In this region, where the
system forms frustrated antiferromagnetic sublattices coupled
by J

(3d)
eff and J

(3)
eff , with smaller J

(1)
eff ,J

(2)
eff , a series of plateaus

appear: 〈My〉 = 1/6 for 0.065 < δ < 0.085, and 〈My〉 = 1/4
and 〈My〉 = 1/2 again for 0.085 < δ.

The local spin configurations at the different plateaus show
magnetic order, which we describe by repetition of magnetic
unit cells. These are sketched for each plateau in Figs. 4 and 5.
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FIG. 3. (Color online) Average magnetization per spin vs hy for
a 3 × L2 (L = 30) site kagome lattice.

At 〈My〉 = 0, 〈My〉 = 1/3, and 〈My〉 = 2/3 the magnetic
pattern is obtained by translations along the {�a + �b,2�a − �b}
vectors (depicted in Fig. 1) of a nine-site magnetic unit cell
consisting of three kagome unit-cell triangles (sites 1, 2, 3)
forming a star. In Fig. 4(a) we show in detail such tiling at
〈My〉 = 0, where the σi = +1 are arranged in closed hexagons
inside each star, surrounded by σi = −1. In Fig. 4(b) the
content of the magnetic unit cell is shown for the following
plateaus: at 〈My〉 = 1/3 one of the spins in a site 3 of
every hexagon flips, so the σi = +1 form a “C,’ while in the
〈My〉 = 2/3 plateau another σ3 = +1 flips to −1. At this point,
every spin in every site 3 is aligned with the external magnetic
field. Finally, the lattice reaches its saturation configuration
where the star consists of three identical triangles.

In contrast to the plateaus described before by a nine-site
magnetic unit cell, the rest of the plateaus exhibit different size
magnetic unit cells. In the 〈My〉 = 1/2 regime shown in Fig. 2
for small δ, the six-site magnetic unit cell is a combination
of two reflected kagome unit-cell triangles with σ3 = −1 and
σ1 = −σ2, as shown in Fig. 4(c).

We recall that all of the lattice triangles in the plateaus
mentioned above satisfy kagomelike ice rules: spins pointing
two-in, one-out, or the other way around. Notice that we are not
keeping track here of the apical spins in the pyrochlore spin ice
motivating our analysis; above the 1/3 plateau, with aligned
apical spins, three-dimensional spin-ice rules would impose
a constraint, allowing only two-in, one-out spins in kagome
triangles. For larger values of δ the magnetic configurations
break the kagome ice rules and we find, at 〈My〉 = 1/6, there is
a 36-site magnetic unit cell, at 〈My〉 = 1/4 a 18-site magnetic
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My

0 1
3

2
3 1

hy

My = 1
2

My = 1

(c)

FIG. 4. (Color online) Magnetic unit cells in the kagome lattice
in different magnetization plateaus for hx = 0. In each elementary
triangle (see Fig. 1, triangle with sites 1-2-3), open blue circles
indicate σi = −1 (out) and full red circles σi = +1 (in). (a) 〈My〉 = 0
tiling and its magnetic unit cell; (b) magnetic unit cell for 〈My〉 =
0,1/3, and 2/3. The 〈My〉 = 1 case has a smaller unit cell as shown in
(c). At the 1/3 plateau both the figure shown or its specular reflection
can be found; (c) 〈My〉 = 0 and 1.

unit cell, and finally, at 〈My〉 = 1/2 a 12-site magnetic unit
cell. All these magnetic unit cells are shown in Fig. 5.

It is interesting to notice that for any of the plateaus shown
in Fig. 2 the Z2 reflection symmetry of the system in the
presence of hy is not broken (〈Mx〉 = 0).

hy

My = 1
6

My = 1
4

My = 1
2

FIG. 5. (Color online) Magnetic unit cells in the kagome lattice
in different magnetization plateaus in the large-δ regime. The 1/6,
1/3, and 1/2 plateaus at the large-δ regime.
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FIG. 6. (Color online) Phase diagram hx vs δ. The numbers show
the normalized magnetization of the plateaus. Only the 〈Mx〉 = 1/3
plateau is induced by lattice deformations.

B. Magnetic field perpendicular to one of the spins

We proceeded in the same way for �h = hxx̂, ranging from
zero to 〈Mx〉 saturation. The main difference with respect to the
previous case is that the spin at each site 3 is perpendicular to
the magnetic field and is not affected by the Zeeman coupling.
The resulting magnetic phase diagram is shown in Fig. 6.
For δ = 0, as in the case above, there is a plateau at 〈Mx〉 =
1/2 extending up to δ � 0.038, where the effective model is
dominated by |J eff

2 | 
 J eff
3d with J eff

1 
 J eff
3 
 J eff

3d /2. At this
plateau we find two possible six-site magnetic unit cells, both
with no net magnetization in the ŷ direction. The magnetic
pattern is built by translation along {2�a,�b} or {2�a,�a + �b}, as
shown in the second line in Fig. 7.

For 0.02 � δ a plateau at 1/3 appears, which widens with
δ. At this plateau we observe two different magnetic orders,
depending of the sign of J eff

1 . For 0.02 � δ � 0.06, the J eff
2

coupling dominates and J eff
1 is positive. We find a nine-site

star-shaped unit cell containing one of the patterns shown in
the third line in Fig. 7: there are clear spin orientations for
sites 1 and 2, but not for site 3, the orientations of which
are completely or partially random (random orientation is
represented by a purple square). For 0.06 � δ, J eff

2 and J eff
3

dominate and J eff
1 turns negative. The transition is signaled by

a clear widening of the plateau in Fig. 6. The consequence is
that the magnetic configurations no longer satisfy the kagome
ice rules. At this regime a 18-site magnetic unit cell is uniquely
determined, as shown in the first line in Fig. 8.

For the 〈Mx〉 = 0 plateau we have a similar situation
depending on the value of δ. the transition around δ 
 0.06,
where J eff

1 = 0, is noticed as a narrowing of the plateau.
Again, for δ � 0.06 there are two possible nine-site star-shaped
magnetic unit cells, sketched in the bottom line in Fig. 7. For
0.06 � δ (negative J eff

1 ) the magnetic unit cell consists of 12
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hx

FIG. 7. (Color online) Magnetic unit cells in different magneti-
zation plateaus for hy = 0 in the small-δ regime. Going from bottom
to top, we show magnetic orders at the various plateaus present in
the magnetic phase diagram shown in Fig. 6. Purple squares indicate
random spin orientation.

sites with two possible arrangements, as shown in Fig. 8. From
these cells, the magnetic tiling is obtained by translation along
{2�a,2�b}.

Finally, in the saturation configuration (Fig. 7), spins at
sites 1 and 2 are aligned with the magnetic field (i.e., σ1 = +1
and σ2 = −1). The remaining site 3 forms a triangular lattice
with anisotropic couplings, J eff

3d along horizontal bonds and
J eff

3 along the others. The observed magnetic orderings in
this sublattice, shown in Fig. 7 (i, ii, iii), depend on δ. For
0 � δ < 0.005, J eff

3 is negative and dominates (|J eff
3 | > J eff

3d ),
giving rise to a ferromagnetic ordering; the magnetic unit
cell is indicated by (i). This phase spontaneously breaks Z2

symmetry through a net magnetization in the ŷ direction

or
Mx = 0

Mx = 1
3

hx

FIG. 8. (Color online) Magnetic unit cells in the magnetization
plateaus for hy = 0 in the large-δ regime.

(with a temperature-driven phase transition in the Ising
universality class). Then, for 0.005 � δ < 0.045, J eff

3d > 0
dominates (|J eff

3 | < J eff
3d ), producing antiferromagnetic order

along horizontal bonds; the corresponding ordering is in-
dicated by (ii). Finally, for δ � 0.045, J eff

3 is positive and
dominates (0 < J eff

3d < J eff
3 ), producing antiferromagnetic or-

der along nonhorizontal bonds; the magnetic pattern is marked
by (iii).

IV. CONCLUSIONS

We have studied the effects of lattice deformations on
the planar kagome ice with nearest-neighbor exchange and
long-range dipolar interactions. We have integrated out the
phonon degrees of freedom and we have kept the induced
effective couplings up to third neighbors. Dipolar interactions
have been truncated at the same order. On the effective Ising
model we have performed Monte Carlo simulations with an
external magnetic field parallel to one of the spins (�h = hyŷ) or
perpendicular to it (�h = hxx̂). We have found several plateaus
in the magnetization curves, depending on the effects of the
deformations δ (which reflects the strength of the spin-phonon
coupling).

In the first case and for small spin-phonon coupling,
plateaus at 0 and 1/2 of saturation appear. As this coupling
increases, the 1/2 plateau splits into a 1/3 and a 2/3 plateau.
This situation persists until the deformations change the sign
of the nearest-neighbor effective interaction, which no longer
induces frustration; thus the kagome ice rules are not obeyed.
In this strongly coupled regime a plethora of plateaus appear.
In all these plateaus different ordered structures show up which
can be easily characterized by small magnetic unit cells.

In the second case, since one out of every three spins
is decoupled from the magnetic field, the situation is much
simpler. There are again plateaus at 0 and 1/2 for small δ, and
the 1/2 plateau turns into a 1/3 plateau as the spin-phonon
coupling is increased.

In connection to the experiments that motivated the present
work,15 one should notice that the regime of interest is that
of small kagome plane-field components, hx and/or hy . We
find that in this regime, both phase diagrams show the same
transitions from M = 0 to M = 1/2 for a small deformation
effect δ and from M = 0 to M = 1/3 for larger δ. The
relevance of these results to the experiments remains to be
analyzed, in particular, by considering a more realistic model
including out-of-plane components of Ising spins. This will be
discussed elsewhere.
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APPENDIX

We provide here some technical details on the construction
of the effective Ising Hamiltonian in Eq. (12). We start with
the spin Hamiltonian in Eq. (1), including first-neighbors
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exchange J0 and dipolar interactions characterized by first-
neighbors strength D. We then include lattice degrees of
freedom �ui in Eq. (2), with elastic energy

∑
i

K

2
(�ui)

2. (A1)

The interaction of lattice degrees of freedom with spins is
included by a first-order expansion of (a) an assumed isotropic
dependence of the exchange coupling on the distance between
lattice sites and (b) the 1/r3 dependence in the dipolar
terms.

The expansion of J (rij ) in Eq. (4) provides spin-phonon
interaction terms

− αJ0

∑
〈ij〉(1)

r̂ij · (�uj − �ui) �Si · �Sj , (A2)

while the variation of 1/r3 in the dipolar interactions provides

Da3
∑
i �=j

1(
r0
ij

)4 [−3�ui · r̂ij (�Si · �Sj )

+ 15�ui · r̂ij (�Si · r̂ij )(�Sj · r̂ij )

−3(�ui · �Si)(�Sj · r̂ij ) − 3(�ui · �Sj )(�Si · r̂ij )]. (A3)

All of these terms, linear in �ui , are collected in Eq. (5) as a
sum over lattice sites

∑
i

�ui ·
⎛
⎝∑

j �=i

�Fij

⎞
⎠ , (A4)

where for any pair of sites j �= i, �Fij contains geometric
information and it is quadratic in the Ising variables σiσj ,
parameterizing spins as �Si = Sσi êi , where S is the spin
magnitude and êi the local reference direction. The geometry
for first- and second-neighbor sites, shown in Fig. 1, leads to
the explicit expression in Eqs. (7) and (8). As stated in the
main text, upon integrating the variables �ui , one arrives to the
effective Hamiltonian in Eq. (10). Finally, retaining terms with
�Fij relating only nearest-neighbor sites produces the effective

Hamiltonian in Eq. (12).
The values of the various parameters in the simulations of

our simplified model have been chosen in accordance with data
taken from Dy2Ti2O7 pyrochlore.1 In particular, D ≈ 1.41K

and J0 ≈ 3.72K , implying d = D
J

≈ 0.38, which is close to
the value d ≈ 1

3 used throughout Sec. III.
To estimate the spin-phonon coupling λ we use data from

Ref. 28, where Dy2Ge2O7 pyrochlore under high pressure is re-
ported; the change in Dy ion distance and the change of the ex-
change coupling with respect to Dy2Ti2O7 allows us to fit λ ≈
−(�J0/J0)/(�a/a) ≈ 20. This value fulfills the condition in
Eq. (11), in support of using a truncated effective Hamiltonian.
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