We analyze the fidelity decay for a system of interacting bosons described by
a Bose-Hubbard Hamiltonian. We find echoes associated with "non-universal"
structures that dominate the energy landscape of the perturbation operator.
Despite their classical origin, these echoes persist deep into the quantum
(perturbative) regime and can be described by an improved random matrix
modeling. In the opposite limit of strong perturbations (and high enough
energies), classical considerations reveal the importance of self-trapping
phenomena in the echo efficiency.Comment: 6 pages, use epl2.cls class, 5 figures Cross reference with nlin,
quant-phy