
Charge and spin transport in strongly correlated one-dimensional quantum systems driven far
from equilibrium

Giuliano Benenti,1,2 Giulio Casati,1,2,3 Tomaž Prosen,4 Davide Rossini,5 and Marko Žnidarič4

1Center for Nonlinear and Complex Systems, CNISM, and CNR-INFM, Università degli Studi dell’Insubria, Via Valleggio 11,
22100 Como, Italy

2Istituto Nazionale di Fisica Nucleare–Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
3Centre for Quantum Technologies, National University of Singapore, 117543 Singapore, Singapore

4Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
5International School for Advanced Studies (SISSA), Via Beirut 2-4, I-34014 Trieste, Italy

�Received 14 January 2009; revised manuscript received 10 June 2009; published 8 July 2009�

We study the charge conductivity in one-dimensional prototype models of interacting particles, such as the
Hubbard and the t-V spinless fermion models, when coupled to some external baths injecting and extracting
particles at the boundaries. We show that, if these systems are driven far from equilibrium, a negative differ-
ential conductivity regime can arise. The above electronic models can be mapped into Heisenberg-like spin
ladders coupled to two magnetic baths, so that charge transport mechanisms are explained in terms of quantum
spin transport. The negative differential conductivity is due to oppositely polarized ferromagnetic domains that
arise at the edges of the chain and therefore inhibit spin transport: we propose a qualitative understanding of
the phenomenon by analyzing the localization of one-magnon excitations created at the borders of a ferromag-
netic region. We also show that negative differential conductivity is stable against breaking of integrability.
Numerical simulations of nonequilibrium time evolution have been performed by employing a Monte Carlo
wave function approach and a matrix product operator formalism.
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I. INTRODUCTION

Transport properties of strongly interacting fermions in
microscopic models of one-dimensional quantum systems
have been the subject of a large number of theoretical and
experimental studies.1 In the last few years this has become a
topical subject, due to the rapidly developing process of min-
iaturization in semiconductor microelectronic devices that is
approaching its natural limits, reaching the atomic or mo-
lecular scale.2–4 Of course, a technological breakthrough in
this direction would require conceptually new devices, such
as few or even single molecules embedded between elec-
trodes, which could perform the basic functions of micro-
electronics. The first promising step in the realization of such
devices comes from the observation of many-body effects,
such as the Coulomb blockade and the Kondo effect in
nanometer-scale systems, such as single molecules or carbon
nanotubes.5,6 Establishing and reaching a suitable degree of
control of nonlinear electronic transport, such as a negative
differential conductivity �NDC� regime, would be one of the
ultimate tasks for functional nanodevices since it lays at the
basis of current rectification and amplification. NDC has
been observed in a variety of nanoscopic objects, such as
semiconductor quantum dots7 and carbon nanotubes,8 as well
as single molecules.9

From a theoretical point of view, nonlinear transport prop-
erties in such systems are usually studied by considering
effective models of few single-particle levels �see, e.g., Refs.
10–14�. In this paper we adopt a rather different perspective
and study the full many-body quantum dynamics of one-
dimensional prototype models of strongly interacting fermi-
ons when they are coupled to some external baths. We will
show how effects of nonlinear transport naturally emerge in

far-from-equilibrium situations by exploiting the many-body
dynamics of such microscopic models in its whole complex-
ity. While situations close to equilibrium are quite well un-
derstood and can be tackled by the powerful linear response
formalism,15–21 almost nothing is known about the physics of
such systems far from equilibrium. In this regime new quan-
tum phases and phenomena can appear, thus making the
problem relevant also for fundamental physics.22 Further-
more, the study of far-from-equilibrium quantum systems is
of interest also for issues such as the control of heat flow at
the nanoscale23,24 and, in quantum information processing,
for quantum state preparation or transfer.25 Unfortunately a
fully analytical treatment is generally unfeasible,26 and one
typically has to resort to numerical simulations, aimed at
solving the quantum master equation27–33 or based on differ-
ent approaches, such as path integral Monte Carlo
approach,34 time-dependent density matrix renormalization
group, or current density functional theory.35–37

In this paper we consider two prototype microscopic one-
dimensional models of interacting fermions, namely, the
Hubbard model and the t-V spinless fermion model, and
couple them to some external baths that inject and extract
particles at the system edges, thus mimicking the effect of
electrodes. The Hubbard and the t-V models can be mapped
into the Heisenberg spin-1/2 ladder and chain, respectively.
In these spin models NDC reflects in the suppression of spin
conduction, while the operators injecting and extracting elec-
trons are mapped into operators flipping the two spin species
at the border of the chain. As an example of spin chains
coupled to such “magnetic baths” one can consider molecu-
lar spin wires38,39 with each boundary coupled to an external
spin �magnetic impurity�; the ratio of up-down and down-up
spin-flip probabilities is determined by the populations of
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such impurities, which in turn can be tuned by means of
applied electromagnetic fields. In the linear response regime,
the electronic �i.e., fermionic� transport and correspondingly
the spin transport can be ballistic or diffusive, depending on
the values of the Hamiltonian parameters. Here we focus on
the far-from-equilibrium regime beyond the linear response
regime. Our numerical results show that, strikingly, in the
above mentioned models it is possible to achieve a regime
where charge or spin conductivity exhibits a negative differ-
ential with respect to the driving strength. NDC arises as a
result of the appearance of a far-from-equilibrium steady
state characterized, for the spin chain models, by long-range
spin ordering into ferromagnetic domains. These ferromag-
netic domains correspond to charge separation in the fermi-
onic models, with all the electrons frozen in half of the lat-
tice. In both cases, it is clear that such cooperative many-
body state hampers spin flips �or charge injection or
extraction�, thus strongly suppressing the current. We will
show that our numerical results can be qualitatively ex-
plained in terms of localization of one-magnon excitations.

The paper is organized as follows: in Sec. II we start by
setting our electron transport problem and reducing it to a
Lindblad master equation formalism, which will be used
throughout the paper. In Sec. III we introduce the model of
open Hubbard chain coupled to two macroscopic reservoirs
and discuss some peculiar charge transport properties, focus-
ing on the NDC behavior. In Sec. IV we consider a simpli-
fied model for spinless fermions and show that it can be
mapped into a Heisenberg spin chain. In Sec. V we study in
detail the spin transport properties of the Heisenberg chain.
Moreover, we provide a one-magnon-localization argument
that qualitatively explains the observed NDC behavior. To
explore the possibility that our system undergoes a metal-
insulator phase transition when driven far from equilibrium,
we propose to study steady-state spin-spin correlation func-
tions. We also add, in Sec. VI, a staggered magnetic field and
check that NDC is stable against breaking of integrability.
Finally, in Sec. VII we draw our conclusions. In Appendixes
A and D we describe the two numerical methods used
throughout the paper, namely, the quantum trajectory �QT�
approach and the matrix product operator �MPO� formalism
�Appendix A�, give technical details on the mapping of our
fermionic systems into spin chain models �Appendix B�, pro-
vide some numerical results about the steady-state spin-spin
correlation functions �Appendix C�, and present an analytical
derivation of the one-magnon argument for the Heisenberg
spin chain �Appendix D�. A brief account of the NDC fea-
tures of the Heisenberg chain can be found in a recent paper
by some of us.32

II. MASTER EQUATION APPROACH

Our electronic transport model is described by the Hamil-
tonian

H = HS + Hl + Hc, �1�

where the different terms correspond to the nanoscale elec-
tronic system, the leads, and the lead-system coupling, re-
spectively.

As sketched in Fig. 1, we consider a N-site chain, whose
autonomous dynamics is described by Hamiltonian HS. Such
a lattice models a nanoscale system, for instance, a chain of
coupled quantum dots or a molecular wire �in the latter case,
each lattice site corresponds to one atom�.

The first and the last sites of the chain, 1 and N, are
coupled to the left and right leads via the tunneling Hamil-
tonian

Hc = �
k,s

�TLkcLk,s
† c1,s + TRkcRk,s

† cN,s� + H.c., �2�

where c† ,c are fermionic creation and annihilation operators:
cjs

† creates an electron with spin s at site j �j=1, . . . ,N,
s= ↑ ,↓� and cLk,s

† �cRk,s
† � creates an electron in the left �right�

lead in the state �Lk ,s� ��Rk ,s��.
The leads are modeled as ideal Fermi gases,

Hl = �
k,s

�k�cLk,s
† cLk,s + cRk,s

† cRk,s� , �3�

which are initially at equilibrium, at temperature T and
chemical potentials �L, �R=�L+eV, where V is the applied
bias voltage and e is the electron charge. We assume that the
coupling between the system and the leads is weak, such that
the state �B�t� of the leads at any time t is well described by
�B�t�=�L � �R, with �L and �R grand canonical density ma-
trices for the left and right leads, respectively.

A Lindblad master equation for the system’s evolution can
be obtained from our microscopic Hamiltonian model fol-
lowing standard textbook derivations under the usual Born-
Markov and rotating wave approximations and neglecting
the Lamb-type renormalization of the unperturbed energy
levels �see, e.g., Sec. IIIC in Ref. 40�,

��

�t
= −

i

�
�HS,�� −

1

2�
m

�Lm
† Lm,�	 + �

m

Lm�Lm
† , �4�

where ��t� is the density matrix describing the open quantum
system, the Lindblad operators Lm describe the effect of the
environment, while �· , ·� and �· , ·	 denote the commutator and
the anticommutator, respectively. Hereafter we shall set
�=1. Moreover, we assume that the tunneling between site 1
�N� and the left �right� lead is much faster than the intrachain
tunneling and that we can neglect the effects of Coulomb
repulsion on the system-lead transition rates. This is the case
in the so-called wide-band limit, in which the conduction

eV

μL

μ RΓL
ΓRΩ Ω

1
2

FIG. 1. Schematic drawing of the level structure for a chain with
N=3 sites. We assume that the lead-chain tunneling rates �L ,�R are
much larger than the intrachain tunneling rates �1 ,�2. The elec-
tronic current flows from the right lead �emitter� to the left lead
�collector�.
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bandwidth of the leads is much larger than all other relevant
energy scales and all the relevant lead states are located in
the center of the conduction band, so that the energy depen-
dence in the system-lead transition rate may be neglected.
Under these approximations, we can easily derive the Lind-
blad master equation �Eq. �4��, with four Lindblad operators
on each of the two chain ends,

L1 = 
�LfLc1,↑
† , L2 = 
�L�1 − fL�c1,↑,

L3 = 
�LfLc1,↓
† , L4 = 
�L�1 − fL�c1,↓, �5�

and similarly

L5 = 
�RfRcN,↑
† , L6 = 
�R�1 − fR�cN,↑,

L7 = 
�RfRcN,↓
† , L8 = 
�R�1 − fR�cN,↓, �6�

where

�L � 2��TL�E1��2gL�E1�, fL � fL�E1� , �7�

�R � 2��TR�EN��2gR�EN�, fR � fR�EN� , �8�

with E1 �EN� being the energy difference between the
two chain states involved in the transitions for site 1 �N�,
gl �l=L ,R� being the density of states of lead l �we assume
that the leads are macroscopic objects, with a continuous
density of states�, Tl��=�k��Tlk, and f l���= �1+e��−�l�/kBT�−1

denoting the Fermi function, with kB as the Boltzmann con-
stant. Note that the energy differences E1 ,EN contain the
charging energy Ec if an electron is tunneling onto an already
occupied site but does not contain it if the site is initially
empty. We have neglected the dependence of the Fermi func-
tions fL , fR on Ec. This condition is fulfilled when Ec	kBT
�in the Hubbard and t-V models described in this paper such
constraint corresponds to on-site repulsion U	kBT and
nearest-neighbor repulsion V	kBT, respectively�. Finally, in
order to consider incoherent tunneling of electrons into the
chain �sequential tunneling approximation�, the level broad-
ening due to the chain-lead tunneling must be small com-
pared to temperature, that is, we require �L ,�R	kBT.

As we shall see in this paper, a main advantage of the
master equation approach is that it can be applied far from
equilibrium beyond linear response regime. The far-from-
equilibrium regime in our model corresponds to large bias
voltage, eV
kBT, with the energy differences E1 ,EN such
that �L	E1 ,EN	�R. In this limit, fL→0, fR→1, that is, the
backward flow of electrons �against the applied bias� van-
ishes.

The master equation approach may be generalized, in-
cluding the effects of Coulomb repulsion41 �thus describing
the Coulomb blockade phenomenon� or the coupling of mul-
tilevel nanoscale systems to external leads.42,43 The price to
pay for such generalizations is, in general, the introduction of
a larger number of Lindblad operators, corresponding to all
possible transitions between the levels of the nanosystem.

The main transport quantity, the electron current j, is de-
fined by the continuity equation of the local charge density
nk,s�ck,s

† ck,s, nk=nk,↑+nk,↓,

�nk

�t
+ �jk = 0, �9�

which can be rewritten as

jk+1 − jk = i�nk,HS�, k = 1, . . . ,N − 1. �10�

Note that, due to the continuity equation, one has j= jk for
any k along the chain.

By definition the electron current is given by

�j� =
dNR

dt
= −

dNL

dt
, �11�

with NR �NL� being the number of electrons in the right �left�
lead. This equation expresses the current in terms of the
number of electrons that enter the system from the left res-
ervoir �−dNL /dt� or go out into the right reservoir �dNR /dt�
per time unit. As we shall discuss in Appendix A, −dNL /dt
and dNR /dt may be computed by means of the quantum
trajectory approach. We will use both Eqs. �10� and �11� to
compute the current.

Explicitly solvable models of master equations are very
limited, therefore support from extensive numerical simula-
tions is generally needed. We used two methods to face this
problem. The first is a Monte Carlo wave function approach
that is based on the technique of QTs, which is widely used
in quantum optics.44–47 The second is a MPO technique
based on the time-dependent density matrix renormalization
group method.48–52 QTs revealed themselves a powerful tool
in the study of relatively small system sizes, especially for
situations with a strong external bias, where equilibration
times needed to reach the steady state are generally long. On
the other hand, the MPO method can deal with systems up to
one order of magnitude larger, but it may encounter some
difficulties in converging to the stationary state for large
driving fields. Both numerical methods are briefly discussed
in Appendix A.

III. HUBBARD MODEL

We start our analysis by considering a paradigmatic
model for the physics of strongly interacting electronic sys-
tems: the Hubbard model. Its Hamiltonian is a sum of a
kinetic term allowing for electron tunneling between the
neighboring lattice sites and a potential term consisting of an
on-site interaction; in one dimension it is given by

HS = − t�
j,s

�cj,s
† cj+1,s + H.c.� + U�

j=1

N

nj,↑nj,↓, �12�

where s stands for spin-up ↑ or spin-down ↓ configuration,
while j=1, . . . ,N is the site index and N is the number of
lattice sites. The operators cj,s

† ,cj,s create and annihilate a
spin-1/2 fermion with spin s at site j and satisfy the usual
anticommutation rules; nj,s=cj,s

† cj,s is the corresponding
number operator. We consider open boundary conditions,
therefore the sum over j in the first term runs from 1 to
N−1. The system parameters t and U �U�0� describe, re-
spectively, the nearest-neighbor hopping strength and the on-
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site repulsion between electrons with opposite spins.
Both ends of the Hubbard chain are coupled to some elec-

trodes that act on the system by injecting or extracting par-
ticles with different spins. In the Lindblad master equation
formalism, we assume that their effect can be modeled by
Lindblad operators �5� and �6�.

From continuity Eq. �10� we obtain

j = − t�
s

�ick,s
† ck+1,s + H.c.� �k = 1, . . . ,N − 1� . �13�

We examined the fermionic transport properties of Hubbard
model �12� coupled to external baths by exploiting a map-
ping of this system into a spin ladder model, where the par-
ticle current is replaced by the spin current. Specifically, the
Hamiltonian in Eq. �12� is mapped into a Heisenberg spin
ladder by first employing a double Jordan-Wigner transfor-
mation �JWT� of spin-up and spin-down fermions �sepa-
rately� into two different species of hard-core bosons. Then
they are transformed into two species of spin-1/2 particles,
which are described by the Pauli matrices � j

 and � j


�=x ,y ,z�. Details are given in Appendix B. One finally
arrives at the following spin ladder Hamiltonian for the au-
tonomous system:

HS = −
t

2 �
j=1

N−1

��� j
x� j+1

x + � j
y� j+1

y � + �� j
x� j+1

x + � j
y� j+1

y ��

+
U

4 �
j=1

N

�� j
z + 1��� j

z + 1� . �14�

The Lindblad operators in Eqs. �5� and �6� correspond, in the
spin-1/2 picture, to operators flipping the two spin species at
the borders of the chain. Apart from some phase factor that is
uninfluent for our purposes �see Appendix B� we have that
cj,↑

† →� j
+ and cj,↑→� j

− for spin-up particles while cj,↓
† →� j

+

and cj,↓→� j
− for spin-down particles �� j

���� j
x� i� j

y� /2 and
� j
���� j

x� i� j
y� /2 denote the raising and lowering operators

for the two spin species�.
The spin current j analogous to electron current �13� is

derived from the continuity equation for the local spin op-
erators Sk

z ��k
z /2, �tSk

z +��j��k=0, which can be rewritten as
�j��k+1− �j��k= i

2 ��k
z ,HS� �analogous equations can be written

for the � species in Eq. �14��. We obtain

j � j� + j�,

j� = −
t

2
��k

x�k+1
y − �k

y�k+1
x � ,

j� = −
t

2
��k

x�k+1
y − �k

y�k+1
x � . �15�

In the following, we choose a symmetric driving,
�L=�R�� and fL,R= 1

2 �1� f�, so that f � fR− fL� �0,1�
�fL� fR, 0� fL , fR�1� is the parameter controlling the driv-
ing strength. Small f implies that the system is weakly driven
by the external baths and behaves as in the linear response

regime. In the opposite limiting case f =1, the left �right�
bath only induces up-down �down-up� spin flips for both spin
species.

Using the method of quantum trajectories we evaluated
the stationary spin currents �j��, �j�� for the two species of
spins. Due to the mapping between the electrons described
by the Hamiltonian in Eq. �12� and the spins obeying Eq.
�14�, this spin current exactly equals the electronic current in
the Hubbard model. In particular, �j�� ��j��� is the current
flow of electrons with spins pointing up �down�, which is the
crucial physical quantity in charge transport.

Perhaps the most interesting result we found in the current
behavior as a function of the driving is the emergence of a
NDC phenomenon for sufficiently strong drivings, as shown
in Fig. 2. It happens that, while for small f values the current
increases, there exists a value f� at which �j� exhibits a maxi-
mum and then, further increasing f , it decreases.

One can now question whether or not this nonmonotonic
behavior is stable when varying the Hamiltonian parameters
t and U. In all simulations reported here we fixed energy
units by setting t=1. In the limiting case where U=0, the
fermions in the Hubbard model are noninteracting, therefore
a linear regime in which the current is always proportional to
the driving strength is expected. In view of these consider-
ations, it is tempting to assume the existence of a critical
value U� in the Hamiltonian parameter space separating the
linear and NDC behaviors of the current. As a matter of fact,
within numerically accessible system sizes, we observed
NDC only for U�U�, where U�2. This can be seen from
Fig. 3, where we plot the maximal current drop, measured by
�j� f=f� − �j� f=1, as a function of the on-site interaction strength
U. From the inset it is clear that, while for U	2 the current
is proportional to the driving, for U
2 a bell-shaped behav-
ior emerges. Of course, on the basis of the data presented in
Fig. 3 one cannot exclude that U� drops with N. In this
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FIG. 2. �Color online� Spin current for the � �full curves and
symbols� and the � species �dashed curves and empty symbols� of
spin as a function of the driving strength for the Hamiltonian in Eq.
�14� with U=5. The system-bath coupling is set equal to �=0.5; the
simulation time �QT approach� is T=2�105. Note that curves and
symbols for the � and � species are nearly superimposed. For the
Hubbard model we set t=1 as the system’s energy scale.
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scenario, in the thermodynamic limit NDC would be ob-
served for any U�0; nonetheless, we point out that a mean-
field qualitative argument given at the end of Sec. V D sup-
ports the existence of NDC for U�2, thus agreeing with our
findings in Fig. 3. In any case, a significant result of our
numerical simulations is the emergence of NDC in a physi-
cally relevant transport model such as the Hubbard model at
small system sizes N�4.

IV. SPINLESS FERMION MODEL

The investigation of the far-from-equilibrium properties
of the Hubbard model is numerically demanding and an ana-
lytical treatment appears difficult. Therefore, in what follows
we will focus on a simplified model, usually referred to as
the t-V model, where the spin degree of freedom is ne-
glected. This model is numerically much more convenient.
Moreover, it will help us in gaining a deeper understanding
of the peculiarities of charge transport discussed in Sec. III
for the Hubbard model.

The t-V model considers spinless fermions instead of
spin-1/2 particles. Its Hamiltonian reads as follows:

HS = − t�
j

�cj
†cj+1 + cj+1

† cj� + V�
j

njnj+1. �16�

Similarly to Hubbard model �12�, the operators cj
† ,cj create

and annihilate a spinless fermion at site j=1, . . . ,N �there-
fore they satisfy canonical anticommutation rules�, while
nj =cj

†cj is the corresponding number operator. The system
parameters t and V describe, respectively, the nearest-
neighbor hopping strength and the fermionic repulsion be-
tween contiguous sites.

In direct analogy with what has been discussed for the
Hubbard model, we take open boundary conditions and
couple both ends of the chain to some external baths that
inject and extract fermions. Now the number of Lindblad
operators is halved since we removed the spin degree of
freedom,

L1 = 
�LfLc1
†, L2 = 
�L�1 − fL�c1,

L3 = 
�RfRcN
† , L4 = 
�R�1 − fR�cN. �17�

The parameters �L, �R, fL, and fR play roles analogous to
those of the corresponding parameters introduced for spinful
fermions in Eqs. �5� and �6�.

The Hamiltonian in Eq. �16� can be mapped into an XXZ
Heisenberg spin chain plus some spurious contributions, con-
sisting in external transverse magnetic fields, which are irrel-
evant in the isolated �Hamiltonian� case and do not qualita-
tively modify the spin current behavior �see Appendix B�.
Therefore we shall neglect these spurious terms and concen-
trate on the XXZ spin-1/2 system whose autonomous Hamil-
tonian is given by

HS = �
j=1

N−1

�Jx�� j
x� j+1

x + � j
y� j+1

y � + Jz� j
z� j+1

z � , �18�

where � j
 �=x ,y ,z� are the Pauli matrices of the jth spin

and ��Jz /Jx denotes the xz anisotropy; N is the total num-
ber of spins. In the t-V model language of Eq. �16�, the
couplings in Eq. �18� are given by Jx=−t /2 and Jz=V /4,
so that the anisotropy �=−V /2t. Strictly speaking, since
fermionic interaction between contiguous sites is repulsive
�V�0�, this would correspond to antiferromagnetic trans-
verse couplings Jz�0. Nonetheless, when considering XXZ
spin model �18�, one is not a priori forced by this constraint
and can also analyze the ferromagnetic case Jz�0. Hereafter
we set Jx=1 as the system’s energy scale.

In the spin-1/2 picture, Lindblad operators �17� are
mapped into operators flipping the border spins. Indeed as
explained in Appendix B, apart from uninfluent phase fac-
tors, we have cj

†→� j
+ and cj→� j

−. The Fermi function fL,R is
such that 2fL,R−1� �−1,1� is the corresponding bath’s mag-
netization per spin in dimensionless units. As we did for the
Hubbard model, we choose �with the exception of Sec.
V B 4� a symmetric driving: �L=�R�� and fL,R= 1

2 �1� f�,
so that f � fR− fL� �0,1� �fL� fR, 0� fL , fR�1� is a single
parameter controlling the driving strength. When f is small
we are in the linear response regime, while in the limiting
case f =1 �corresponding to fL=0, fR=1� the left �right� bath
only induces up-down �down-up� spin flips. The spin current
is computed as in Eq. �15� but without the contribution of the
� species,

j = Jx��k
x�k+1

y − �k
y�k+1

x � . �19�

Quantitative numerical and semianalytical analyses of
model �18� are easier than those of model �14�. In particular,
the local Hilbert space is halved: for a fixed number of sites
N, the size N=2N of a generic state vector describing the
system is decreased by a square root factor with respect to
the size �2N�2 of a state vector for spin ladder �14� of length
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FIG. 3. �Color online� Maximum current minus current at maxi-
mum driving strength, �j� f� − �j�1, as a function of the on-site repul-
sion U. In the inset we show the spin current as a function of f for
a fixed size N=6 and different values of U: from top to bottom U
=0 �circles�, 0.5 �squares�, 1 �diamonds�, 1.5 �triangles up�, 2 �tri-
angles left�, 2.5 �triangles down�, 3 �triangles right�, and 5 �stars�.
Data are for �=1, and the simulation time �QT approach� is T
=105. The current is plotted only for the �-spin species; differences
with the �-spin species are negligible in the scales of the figure.
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N. It is therefore clear that, without truncating the Hilbert
space, using the Monte Carlo wave function method one is
able to simulate chains of twice the length of a ladder with
the same computational cost. We wish to note that in the spin
ladder systems we have so far used only the QT method to
perform numerical simulations. Also the MPO approach
could, in principle, be used by simply joining two sites from
the opposite spin chains into a single site with a local dimen-
sion of 16 �for a single chain it is 4�. The complexity of time
evolution increases by a factor 43 at a fixed matrix dimension
D �see Appendix A for definitions� because of singular value
decompositions of 16D�16D matrices instead of 4D�4D.

V. SPIN TRANSPORT PROPERTIES IN A HEISENBERG
CHAIN

In this section, we study the far-from-equilibrium trans-
port properties of XXZ Heisenberg spin chain �18�, with the
two edge spins coupled to external baths, as described in
Sec. IV. We first present, in Secs. V A–V C, the results of our
numerical simulations, focusing on the NDC phenomenon
and on the appearance of a long-range spin ordering into
ferromagnetic domains. Then, in Sec. V D, we qualitatively
explain our results in terms of one-magnon localization.
Since our findings are suggestive of a phase transition with
the emergence of long-range order, we have also searched for
numerical evidence of such transition by analyzing the spin-
spin correlation function. Our data displayed in Appendix C,
even if not conclusive, show a dramatic slowing down of the
correlation decay in the NDC regime even though the acces-
sible system sizes are too small for a quantitative analysis of
a possible phase transition. Finally, in Sec. V E we rephrase
the results in terms of the fermionic current.

Note that the spin current in the XXZ model with antifer-
romagnetic coupling is the same as the charge current in the
t-V model; therefore all the results we discuss here for
Jz�0 also apply to the case of fermionic transport in Eq.
�16�. For the spin transport we also considered cases where
Jz�0, thus corresponding to a rather unphysical attractive
fermionic interaction in the t-V model; quite surprisingly, we
found that data obtained for the XXZ chain are insensitive to
the sign of the transverse coupling Jz.

As far as we know, transport properties of the autonomous
model described by Eq. �18� have been extensively analyzed
only within the linear response regime16–19 even if a fully
comprehensive understanding is still lacking. In particular, it
has been found that the low-temperature and the high-
temperature thermodynamic transport properties are essen-
tially determined by the xz anisotropy �.16 In the zero mag-
netization sector, the XXZ model is an ideal conductor for
����1, while numerical data17 suggest that the system is a
normal �diffusive� spin conductor for ����1. The normal
conduction in the ����1 regime has been recently confirmed
for systems of much larger size,33 N�100 �see also Ref. 35�.
The above two distinct behaviors may be associated to two
different system phases at zero temperature: for −1���1
the system is gapless, while for ��−1 ���1� it is ferro-
magnetically �antiferromagnetically� ordered, and the ground
state exhibits a finite gap with the first excited state.

We now investigate the far-from-equilibrium properties of
the XXZ Heisenberg spin chain beyond the linear response
regime.

A. Gapless regime

We start by considering the gapless phase, where the lin-
ear response theory predicts ballistic transport. We found that
in the regime ����1 the current is always proportional to the
driving and independent of the chain length N; this holds for
any value of the driving strength f � �0,1�. Remarkably,
there are no appreciable quantitative differences between the
current evaluated with a ferromagnetic �Jz�0� or antiferro-
magnetic �Jz�0� coupling. Figure 4 displays the spin current
as a function of the driving strength f for �=0.5. The corre-
sponding spin magnetization profiles for two distinct values
of f are displayed in the insets as a function of the site index.
In both cases we can see a nearly flat profile, which is typical
of systems with ballistic spin propagation;53 most impor-
tantly, we notice that the stationary spin magnetization at the
borders is very different from the bath magnetizations
��L,R

z �=� f .

B. Gapped regime

The transport properties are much more interesting in the
gapped phase where, in the linear response regime f	1,
numerical data suggest normal diffusive transport.17,33 For
����1 the spin current is no longer monotonic with f and
exhibits a typical bell-shaped behavior, as we observed for
the Hubbard model �see Fig. 2�.

In Fig. 5 we plot the spin current as a function of f . For
small f the system behaves as a normal Ohmic conductor, as
expected from linear response results:17,33 namely, the cur-
rent increases like �j�� f /N. After a given value f� of the
driving at which the current reaches its maximum, it starts
decreasing with f until it is strongly suppressed at f =1. De-
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FIG. 4. �Color online� Spin current as a function of the driving
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index coordinate for two values: f =0.5,1. Data are obtained from
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tails on the scaling of �j� with the system size at f =1 are
given in Sec. V B 1. Here we just point out that, interest-
ingly, NDC is already visible after short integration times: as
a matter of fact, with the QT approach �see data for N�16�,
the characteristic bell-shaped behaviors can be obtained after
a simulation time T�2.5�103 �symbols� that is much
shorter than the one required to reach the stationary values,
T�105 �curves�; furthermore, NDC features are present even
after very short times, T�5�102.

The data shown in Fig. 5 are suggestive of a transition
from a normal spin conductor phase at small f to an insulator
phase at large f . On the other hand, for the achievable system
sizes, the value f��N� where the current reaches a maximum
drops with N. Therefore, in principle, we cannot exclude an
alternative scenario where at the thermodynamic limit the
system becomes an insulator at any driving strength f . In any
case, as far as the bias f is increased, a substantial modifica-
tion of spin transport properties becomes apparent. These
results are suggestive of a far-from-equilibrium quantum
phase transition. In the light of a recent paper of one of us,22

we have analyzed the spin-spin correlation functions in order
to see the possible emergence of a phase transition that
should be characterized by the emergence at strong driving
strength f of a long-range correlation order. Numerical data,
even if not conclusive, are shown in Appendix C and are
supported by such a behavior.

1. Behavior at f=1

As hinted in Ref. 32, in order to understand the physical
mechanism lying at the basis of NDC, we have to analyze
the stationary spin magnetization profiles. These are shown
in Fig. 6. Note that, in contrast with the fast-time raising up
of the NDC phenomenon, a much longer integration time is
required in order to reach a good convergence for the spin

magnetizations due to the equilibration time scales that, at
f =1, grow exponentially with the distance of the spin from
the chain border.32

As shown in Fig. 6, magnetization profiles in the linear
response regime f	1 exhibit a constant linear gradient,
where the magnetizations of the two edge spins are close to
the bath magnetizations �f , as it is expected for normal
Ohmic conductors. In the limiting case f =1 a peculiar sta-
tionary state characterized by two ferromagnetic domains
that are oppositely polarized appears. Moreover their relative
width increases with the system size. These domains are
eventually responsible for strongly suppressing the spin cur-
rent since they inhibit spin flips. Strictly speaking, evidence
of the formation of such domains is also visible for smaller
though strong drivings, where the NDC effect is established
�see Sec. V B 2�. We will explain later in Sec. V D the physi-
cal mechanism leading to the formation of such domains in
the gapped phase. Here we stress that, as for the gapless
regime, we found no quantitative differences between a fer-
romagnetic and a antiferromagnetic coupling. This may be
somewhat counterintuitive since in this last case ferromag-
netic domains correspond to a highly excited state for the
autonomous system; the mechanism therefore has its roots in
the genuine far-from-equilibrium dynamics.

We already observed that the current for small driving
strengths behaves as a normal Ohmic conductor: �j�� f /N.
On the other hand, Fig. 7 shows that at maximum bias f =1
the current drops to zero exponentially with N, that is, the
system is an insulator. Unfortunately we could not achieve
system sizes larger than N=12 since there the current is very
small, therefore it would require a huge number of time steps
in order to get reliable results, thus making simulations un-
feasible �already for N=12 the simulation time T=7.5�104

is not long enough: the last point in the figure has been
obtained by observing only one spin flip during the whole
QT simulation�.
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FIG. 5. �Color online� Spin current as a function of the driving
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QT after a simulation time T=2.5�103, while curves display data
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2. Spin blockade

At maximum driving the current is strongly suppressed
due to the fact that ferromagnetic domains of macroscopic
length �N /2 are formed. Nonetheless, a strong inhibition of
the spin current can be also achieved by only creating a
much smaller ferromagnetic region close to each bath. In-
deed, signatures of this spin blockade mechanism are already
seen at f �0.9–0.95, where asymptotically only a couple of
outer spins reach magnetization values close to �1, but still
the current is far below its maximum value �j� f�.

Some spin magnetization profiles for strong drivings are
explicitly shown in Fig. 8. The dotted-dashed curve corre-
sponds to a maximum driving; there macroscopic ferromag-

netic domains are clearly visible. The other ones are for f
slightly less than 1, but it is still possible to see that a couple
of spins close to the borders are nearly perfectly down or up
polarized. In the inset we fix f =0.9 and vary the system size;
we notice that, when increasing N, the number of spins in-
volved in the spin blockade also increases, in accordance
with the results previously shown for f =1.

3. Thickness of the interface region

An interesting point that can be addressed is the analysis,
at maximum driving strength f =1, of the characteristic thick-
ness � of the interface region, located around the chain center
and dividing the two ferromagnetic regions. According to our
data shown in Fig. 9, this size depends on the system aniso-
tropy �. On the other hand, we checked that dependence on
N is negligible. In order to give a rough estimate of �, we
fixed a threshold �� j

z� �horizontal dotted-dashed line in the
figure, corresponding to �� j

z�=0.6� and then evaluated the

distance �̄ of the point in each spin magnetization profile
reaching that value from the limiting case ��→�� in which
the chain is exactly split into two ferromagnetic domains
�due to the fact that our problem is on a lattice of finite
length, the �→� magnetization for N /2� j�N /2+1 is es-
timated after joining the two perfectly ferromagnetic do-
mains with a skew dashed line�. In the inset we study the

dependence of the distance �̄ on �; the straight line shows

the fit �̄� �ln ��−1.625. We point out that the semianalytical
argument of the one-magnon-localization length that will be
discussed in Sec. V D predicts that the size � of the interface
region is of the order of the one-magnon-localization length,
namely, logarithmic in � and N independent.

4. Stability of the ferromagnetic domains

Until now we have only considered situations in which
system-reservoir couplings �L,R and driving strengths �L,R
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FIG. 7. �Color online� Spin current at a fixed driving strength
f =1 for the Heisenberg spin model with �=2. The system-bath
coupling is set equal to �=4; the simulation time �QT approach� is
T=7.5�104. The thick curve displays an exponential fit of numeri-
cal data �circles�.

0 0.2 0.4 0.6 0.8 1

(j-1)/(N-1)
-1

-0.5

0

0.5

1

〈σz

j
〉

f = 0.9
f = 0.95
f = 1

� �
�

��
��

��

�
� �
� �

� �
�

�

�

�
�

�

�

�
�
�

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

N = 12
N = 8

��
��
�
�

N = 6��
��
��
��

N = 4����

f = 0.9

FIG. 8. �Color online� Spin magnetization profiles versus scaled
spin index coordinate in the insulating case �=2 with a system-bath
coupling �=4 for strong drivings. In the main panel we fix a system
size N=12 and choose different values of f , while in the inset we
focus on the case f =0.9 and vary the size according to the legend.
Data are obtained from the QT approach.

1 2 3 4 5 6 7 8
j

-1

-0.5

0

0.5

1

〈σz

j
〉

∆ = 1.1
∆ = 1.2
∆ = 1.3
∆ = 1.4
∆ = 1.5
∆ = 1.8
∆ = 2.
∆ = 3.
∆ = 4.

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
��
��

�
�

��
��

�

�
�

��
��
�
�
�
�
�
��
��
�
�
�
���
�
���

����

10
-1

10
0

ln(∆)

10
-1

10
0

ξ

FIG. 9. �Color online� Spin magnetization profiles versus scaled
spin index coordinate for a chain with N=8 spins at maximum
driving �f =1� for different values of ��1; the system-bath cou-
pling is set equal to �=1. In the inset we plot an estimate of the

thickness of the interface region �̄ as a function of ln���; the

straight line shows the fit �̄� �ln ��−1.625. Data are obtained from the
QT approach.

BENENTI et al. PHYSICAL REVIEW B 80, 035110 �2009�

035110-8



are symmetric. At this step one may wonder if the position of
the domain wall between the two ferromagnetic regions in
the spin magnetization profiles is stable against the breaking
of such symmetry. Any imbalance, though small, may, in
principle, cause a shift of the interface region toward one of
the boundaries of the chain. This would raise some doubts
about the stability of the previously depicted scenario, mak-
ing our discussion relevant only for fine-tuned values of the
Lindblad parameters. Below we show that this is not the
case.

Imbalances of the couplings �L,R have quite tiny effects
on the steady state at maximum driving, as one can see from
the upper panel of Fig. 10. We put there a strong asymmetry
by setting �L=1, �R=0.1 and thus admitting a coupling to
the right bath that is one order of magnitude smaller than the
one to the left bath. Differences with respect to the symmet-
ric case are apparent for finite integration times T, where the
domain wall is clearly shifted to the right. On the other hand,
as far as T is increased, profiles become more symmetric. It
is not a priori clear whether the steady state is perfectly
symmetric, as those in Fig. 6: from our data we cannot rule
out possible deviations in the position of the domain wall,
which are logarithmic in the coupling imbalance; this would
be hardly detectable from a merely numerical analysis.

Stronger modifications are induced by imbalances on the
driving strengths �L,R. Indeed, in that case even a small
asymmetry would cause a weaker spin blockade on one side,
as discussed in Sec. V B 2 �see the lower panel of Fig. 10, in
which we put fL=0, fR=0.99�; as a consequence, a deforma-
tion and a broadening of the interface region are also estab-
lished. Nonetheless, we point out that these modifications
appear to be continuous in the degree of imbalance and thus,
in principle, controllable.

C. XXX Heisenberg isotropic model

The isotropic XXX Heisenberg chain �that is, ���=1� cor-
responds to a limiting, nonetheless interesting situation, since
molecular compounds that are used to investigate one-
dimensional spin-1/2 transport properties are often very well
described by isotropic antiferromagnetic Heisenberg ex-
change couplings.39,54

In Fig. 11 we show some numerical data concerning the
behavior of the spin current with respect to the driving field:
NDC is visible only for sufficiently long chains �N�8�. A
qualitative understanding of this result comes from an analy-
sis of the spin magnetization profiles at f =1, which are plot-
ted in the inset. As a matter of fact, we can recognize a
situation that is similar to the one already observed at
����1 and f�1 �see Fig. 8�: by increasing N, a partial spin
blockade of the outermost spins is established. This progres-
sively inhibits the current flow along the chain, thus setting
up the NDC mechanism. Notice also that, at small N values
�N=4,6�, the spin blockade is very weak; this prevents sys-
tems of very small size from exhibiting the NDC phenom-
enon even though a nonlinear dependence of the spin current
on the driving strength can already be seen.

We conjecture that also for the isotropic XXX chain the
NDC phenomenon is stable at the thermodynamic limit. In-
deed, our simulations suggest the following picture: on one
hand, at small f the current decreases as �j��N− with
0.4 �data for f =0.2 are shown in Fig. 12, left; we
checked that this is consistent for all f�0.3�. On the other
hand, at f =1 it drops to zero faster than linearly with N
�probably exponentially, as suggested by Fig. 12, right�, thus
indicating a relative current drop 1− �j� f=1 / �j� f=f� that in-
creases with N toward the unit value; here f� denotes the
driving at which the current is maximal. In both panels a
log-log scale has been used so to make visible the distinction
between a power-law scaling at small f and an exponential
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behavior at f =1. We also plotted the 1 /N behavior �dashed
lines� expected for normal Ohmic conductors to show that
for f	1 the decay is slower than that and for f =1 it is faster.

D. One-magnon localization

The formation of ferromagnetic domains and the negative
differential conductivity phenomenon in the gapped regime
����1 can be qualitatively explained in terms of localization
of one-magnon excitations created at the borders of a ferro-
magnetic domain. We should immediately point out that the
following argument is independent of the ferromagnetic of
antiferromagnetic coupling. This reflects into the fact that the
steady state with ferromagnetic domains is completely driven
by dynamical effects and not by the system ground state,
being actually an antiferromagnet for Jz�1.

Given a ferromagnetic state �0���↓↓ . . .↓�, one-magnon
excitations have the general form �k=1

N k�k�, where
�k�=�k

+�0� describes the state with the kth spin flipped. If the
autonomous XXZ chain has open boundary conditions,
there is an energy gap 2�Jz� between the states �1� and �N�
�spin-flip excitations at the boundaries� and the states
�2� , �3� , . . . , �N−1�. Indeed, we have

�0�Hs�0� = �N − 1�Jz,

�1�Hs�1� = �N�Hs�N� = �N − 3�Jz,

�2�Hs�2� = ¯ = �N − 1�Hs�N − 1� = �N − 5�Jz, �20�

where Hs is XXZ Hamiltonian �18�. Only nearest-neighbor
spin-flipped states are coupled and the coupling strength is
2�Jx�,

�k�Hs�k + 1� = 2Jx, k = 1, . . . ,N − 1. �21�

As shown in Appendix D, the autonomous model defined by
Eqs. �20� and �21� is exactly solvable in the limit of large N
and spin-flip excitations created at the borders of the chain

remain exponentially localized when �Jz� / �Jx�= ����1 over a
localization length ��1 / ln���.

We now consider the coupling to external baths. First, it is
instructive to discuss the case in which the system is coupled
to a single fully polarized reservoir, fL=0. Regardless of the
anisotropy �, the stationary state is pure and ferromagnetic,
namely, �↓↓ . . .↓��↓↓ . . .↓�, since Hamiltonian �18� conserves
the overall magnetization while at the left boundary of the
chain only the lowering operator L2��1

− acts �note that the
convergence to the stationary ferromagnetic state can be rig-
orously proven following Ref. 25�. As shown in Fig. 13 �see
circles�, the time scale required for the convergence of the
jth spin to the equilibrium state �↓ � scales exponentially with
j. Consider now an intermediate state with m spins. To en-
large the ferromagnetic domain, one-magnon excitations
should be propagated, through � j

x� j+1
x and � j

y� j+1
y exchange

couplings of Hamiltonian �18�, across the ferromagnetic do-
main to the left chain boundary. Suppose, for instance, that
we have the leftmost m spins down and the �m+1�th spin up
and that this excitation propagates to the left bath; then the
bath can flip this spin down, thus ending up with a ferromag-
netic domain with m+1 leftmost spins down. The crucial
point is that the one-magnon propagation is exponentially
localized at ����1. Hence, exponentially long time scales
�exp�j /���exp�j ln���� are required to polarize the jth spin.

Consider now two baths at f =1. Due to exponential one-
magnon localization, essentially only the nearest bath is felt
by the spins in the chain, with the exception of an interface
region between the two ferromagnetic domains, whose
length is of the order of the one-magnon localization length.
As shown in Fig. 13 �squares�, apart from the interface re-
gion, the spin magnetization profiles for the spins closer to
the left than to the right bath essentially evolve as in the
single-bath case.

These ferromagnetic domains are responsible for strongly
inhibiting spin flips and therefore for suppressing the spin
current at f =1. Since at small f the current grows linearly,
we can conclude that, due to the continuity of �j� f, a region
of negative differential conductivity exists. Finally, we note
that, in agreement with our numerical data, the one-magnon
argument does not distinguish between ferromagnetic
�Jz�0� and antiferromagnetic �Jz�0� spin couplings.

The argument developed in this section can be extended
to spin ladder model �14� obtained by applying a Jordan-
Wigner transformation �JWT� to the Hubbard Hamiltonian.
Assume that we have a ferromagnetic domain of the m spins
of both species �� and �� closest to, say, the left bath. Now
consider a spin flip for the �m+1�th spin, for instance, of the
� species and assume that the spins of the � species can be
treated within the mean-field approximation. The only en-
ergy term not constant for autonomous evolution �14� re-
stricted to the one-magnon sector �� species� is U

4 � j� j
z� j

z.
Within mean-field approximation, we substitute � j

z→ �� j
z�,

and �� j
z�=1 for i=1, . . . ,m, while ��m+1

z �=0. There is an en-
ergy gap �U�

2 between states with the spin flipped belonging to
sites from 1 to m and the state with the �m+1�th spin flipped.
The hopping strength is �t�. Therefore magnon localization as
in the XXZ model takes place for �U��2�t�. Such prediction
is compatible with the numerical results shown in Fig. 3,
where NDC for the Hubbard model is observed only for
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FIG. 12. �Color online� Spin current for �=1 at a fixed driving
strength, f =0.2 on the left, while f =1 on the right �see Fig. 11�. Full
curves are fits of numerical data �obtained from QT�: while an
inverse power-law fit works well at f	1, for maximum driving an
exponential fit seems adequate. The dashed lines indicate a behavior
�j� f �1 /N and are plotted as guidelines.

BENENTI et al. PHYSICAL REVIEW B 80, 035110 �2009�

035110-10



U�U�, with U�2. However, the argument is of a mean-
field nature and therefore has to be considered weaker than
the one developed for the XXZ chain.

E. Discussion in terms of the charge current in the fermionic
model

At this stage, it is useful to summarize the main results
obtained for the spin chain in terms of the original electronic
t-V model. Since 1

2 �1+ ��k
z�� corresponds to the electronic

charge density at site k, the ferromagnetic domains observed
at f =1 corresponds, in the fermionic picture, to a phase sepa-
ration, with all the electrons frozen in the right half of the
lattice close to the emitter electrode. Therefore, charge trans-
port is inhibited, provided that V / t�2. Note that this charge
clustering takes place in spite of the repulsive nature of
electron-electron interactions. The magnon-localization argu-
ment can be straightforwardly reformulated in terms of the
fermionic model. In particular, a one-magnon excitation be-
comes a single electron �hole� propagating on an empty
�filled� lattice. The single-bath case can then be interpreted in
terms of depletion �filling� of the lattice by means of a single
lead, playing the role of a charge collector �emitter�. This
process requires exponentially long time scales at V / t�2.
Finally, we point out that the NDC regime is observed for
strongly interacting systems �V / t�2� and in the far-from-
equilibrium regime, corresponding to large bias voltages
eV
kBT, so that the Fermi functions for the collector and
the emitter electrodes, evaluated at the energy differences E1
and EN, satisfy fL0 and fR1, respectively.

VI. NONINTEGRABLE MODEL: STAGGERED MAGNETIC
FIELD

The high-temperature transport properties in one-
dimensional quantum many-body systems are strongly af-

fected by the presence of conservation laws.20,21,55,56 In par-
ticular, the existence of local conserved quantities Qn, n
=1,2 , . . ., typically leads to an ideally conducting-ballistic
behavior at all the temperatures. This is a consequence of the
inequality due to Mazur,57 which bounds the time
averaged current-current autocorrelation function
as limt→��1 / t��0

t dt��J�t��J�0�����n��JQn���2, where
�X��� tr�exp�−�H�X� / tr�exp�−�H�� and Qn are chosen and
normalized such that �QnQm�=�nm. As one can see, this ar-
gument essentially depends on, first, the existence of non-
trivial conserved quantities �as is typically the case only for
completely integrable systems� and, second, on the overlaps
�QnJ�� between the conservation laws Qn and the transport-
ing current J in question. For example, for the XXZ model
all the conservation laws have zero overlaps with the spin
current, �JsQn�=0, which allows in the gapped regime
����1 for the normal diffusive spin transport as discussed
earlier, whereas, for example, the heat transport is ballistic as
the energy current is just one of the conserved quantities
JE=Q3.55 However, even though the XXZ Heisenberg model
is completely integrable, we have seen that the spin transport
properties in the far-from-equilibrium regime are very differ-
ent from the linear response regime behavior. Therefore, we
might expect that the presence of NDC is not related to in-
tegrability of the Heisenberg model.

In order to check the stability of the nonlinear transport
highlighted in the previous sections with respect to breaking
system integrability, we considered a slightly modified spin
chain model, in which a staggered magnetic field along the z
direction is added to the Heisenberg Hamiltonian of Eq. �18�.
Namely, we studied the following autonomous model:

HS = �
j=1

N−1

��� j
x� j+1

x + � j
y� j+1

y � + �� j
z� j+1

z � − B�
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N

�− 1� j� j
z.
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FIG. 13. �Color online� Spin
magnetization profiles at �=2, �
=4 for a maximal driving
strength: f =1. The various panels
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files are plotted. Circles are for a
single bath coupled to the first
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Interestingly, model �22� exhibits a transition from inte-
grability to quantum chaos when increasing the field strength
B. This can be detected in the change in the spectral statistics
of the system.58,59 In particular, in Fig. 14 we plot the inte-
grated level spacing distribution I�S� �I�S� is the probability
that a randomly chosen level spacing—normalized to the
mean level spacing—is less than S�. It is shown that, for a
given set of parameters and B�0, the level statistics follows
the universal predictions of the random matrix theory
�Wigner-Dyson statistics in the presence of time-reversal
symmetry�, as typical for chaotic �strongly nonintegrable�
systems. In the inset we analyzed the corresponding spin
current as a function of the driving strength: we found a
qualitatively analogous behavior as in the integrable case,
with a NDC regime still clearly visible. We also checked the
presence of a normal Ohmic conduction for small drivings:
from Fig. 15 one can see that, for f =0.1, the spin current
scales as �j��1 /N, according to Ohm’s law of diffusive
transport �see also Ref. 33�; therefore spin transport is nor-
mally diffusive, as expected for a chaotic system. In analogy
with the integrable case, for larger gradients where the cur-
rent behaves highly nonlinearly, the spin current decays
faster than linearly �at f =0.5 we found a decay
�j���S /N1.4, thus indicating an insulating behavior in the
thermodynamic limit�. Also magnetization profiles in that
case are not linear anymore and the emergence of a weak
spin blockade is already visible at f =0.5, for sufficiently

large sizes �see the inset of Fig. 15�, similarly to what has
been already discussed in Sec. V B 2.

On the other hand, we considered a situation in which the
system does not exhibit NDC ��=0.5,B=0.5�, but still it is
quantum chaotic with respect to energy level statistics. In
that case we found the usually predicted behavior for nonin-
tegrable systems:20 the current is always proportional to the
driving for any value of f and a normal Ohmic regime for
both small and strong drivings emerges, as shown in Fig. 16.
This comes in sharp contrast to the integrable case, where at
��1 ballistic spin transport takes place. Consistently with
normal metallic conductors, the spin magnetization profiles
exhibit a linear gradient �see the inset of Fig. 16�.

From the results of this section we can conclude that the
NDC phenomenon is governed by the anisotropy parameter
� and is insensitive to the transition from integrability to
quantum chaos. The appearance of NDC in the quantum
chaos regime is particularly significant since in this case nor-
mal Ohmic conduction is expected in the linear response
regime �small driving f�. Due to the insulating behavior ob-
served for ����1 at large driving strengths f , the system
should undergo a metal-to-insulator transition when increas-
ing f .

VII. CONCLUSIONS

In summary, we have performed extensive numerical
simulations showing that the one-dimensional Hubbard
model, as well as the corresponding spinless fermion model,
exhibits a regime of negative differential conductivity, in
which the particle current decreases as one increases the
driving field. The same phenomenon, translated in terms of
the spin current, is observed and studied also in the aniso-
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FIG. 14. �Color online� Integrated level spacing distribution I�S�
for the Hamiltonian in Eq. �22� with �=1.3, B=0.3, N=16; data
�full black curve� correspond to the zero magnetization sector. In
order to apply the random matrix theory, the system Hamiltonian
has to be diagonalized in a subspace in which no symmetries �ex-
cept the time reversal� are left. For this purpose, in addition to
fixing the total magnetization, we applied the staggered magnetic
field on all spins except the first one �i.e., we supposed that the last
sum in Eq. �22� runs from 2 to N�. This breaks the spatial reflection
symmetry j→N− j, without affecting the transport properties under
investigation. Red dashed �blue dotted� curve indicates Wigner-
Dyson �Poissonian� statistics, typical for chaotic �integrable� sys-
tems. In the inset �data from QT� we plot the spin current as a
function of the driving strength for different chain lengths; we fixed
a system-bath coupling �=1.
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tropic Heisenberg spin chain. Our numerical data show that
in the Ising-like regime, corresponding to anisotropy param-
eter ����1, the system is a normal conductor for small driv-
ing fields, while it displays negative differential conductivity
for stronger drivings. The phenomenon is stable against the
breaking of integrability, as, for instance, it persists in the
presence of a staggered magnetic field. On the other hand, in
the XY-like regime, ����1, ballistic conduction with current
proportional to driving field without negative differential
conductivity is observed at all drivings. Negative differential
conductivity is schematically explained using the spectrum
of one-magnon excitations, which become localized for
����1 at the chain boundaries.

The observed negative differential conductivity arises as
an outcome of a beautiful interplay between coherent many-
body quantum dynamics of the interacting electrons or spin
chain and incoherent charge injection-extraction or spin
pumping operated by macroscopic leads or spin baths. While
our results are suggestive of a metal-insulator phase transi-
tion when driving our model systems far from equilibrium,
new analytical approaches are required to ascertain whether
NDC survives at the thermodynamic limit. At any rate, the
discussed magnon-localization mechanism for NDC is of po-
tential interest for nanoscale devices such as current or heat
diodes and transistor.

Note added. After the completion of this work we became
aware of a related paper60 where it is shown that negative
differential conductivity can be also achieved in a continuum
limit of a fermionic tight-binding model, driven far from
equilibrium by embedding it between two free fermionic res-
ervoirs.
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APPENDIX A: NUMERICAL METHODS

1. Quantum trajectory approach

As compared to full density matrix simulations, the ad-
vantage of a quantum trajectory approach is that, instead of
storing and evolving a density matrix of size N�N, one
works with a stochastically evolving state vector of size N
�N being the Hilbert space dimension of the system�. The
first two terms in the right-hand side of Eq. �4� can be re-
garded as the evolution performed by an effective non-
Hermitian Hamiltonian Heff�HS+ iK, with K=− 1

2�mLm
† Lm;

the last term is responsible for the so-called quantum jumps,
as explained below. If the initial density matrix describes a
pure state ��t0�= ���t0�����t0��, after a small amount of time
dt it evolves into the statistical mixture

��t0 + dt� = �1 − �
m

dpm���0���0� + �
m

dpm��m���m� ,

�A1�

where dpm= ���t0��Lm
† Lm���t0��dt and the new states are de-

fined by

��0� =
e−iHeffdt���t0��


1 − �
m

dpm

, ��m� =
Lm���t0��

�Lm���t0���
. �A2�

Therefore, with probability dpm a jump to the state ��m� oc-
curs, while with probability 1−�mdpm there are no jumps
and the system evolves according to Heff.

In practice, one starts from a pure random state ���t0��
and, at intervals dt much smaller than the relevant dynamical
time scales, a random number �� �0,1� is chosen. If
���mdpm, the state of the system jumps to one of the states
��m� �to ��1� if 0���dp1, to ��2� if dp1���dp1+dp2, and
so on�. On the other hand, if ���mdpm the evolution with
the non-Hermitian Hamiltonian Heff takes place, thus ending
up in the state ��0�. This process has to be repeated as many
times as nsteps=T /dt, where T is the total evolution time.
Assuming that there exists a single out-of-equilibrium steady
state �s, the expectation values �A�=tr�A�s� of any observ-
able A are obtained after averaging in time ���t��A���t�� up
to a long enough time T, skipping the initial convergence
time Tconv needed for a solution of the Lindblad equation to
converge into the stationary one.

In the cases discussed in this paper, the non-Hermitian
evolution of e−iHeffdt has been simulated with a second-order
time Trotter expansion; a time slicing dt�2�10−3 is suffi-
cient to obtain accurate results. The fermionic systems taken
into account are mapped into lattice spin models; simulations
are then directly performed on spin-1/2 Hamiltonians �see
Eqs. �14� and �18��. We were able to simulate systems with
sizes up to N105 �that is, N=log2 N16 spin-1/2 par-
ticles�. We calculated the stationary spin current �j� on the
basis on Eq. �11�. That is, we computed �j� by summing up
all down-up flips minus all up-down flips at the right end of
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FIG. 16. �Color online� Dependence of the scaled spin current
on the chain length for the staggered Heisenberg model, with �
=0.5, B=0.5, and �=1. Both for strong and weak drivings the sys-
tem shows a normal Ohmic behavior, as it is depicted by the
straight dashed line, which corresponds to �5.2 /N. The magnetiza-
tion has an approximately linear profile, as shown in the inset, with
a slight even-odd oscillation that is due to a staggered magnetic
field. Data are obtained from MPO.
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the chain or all up-down flips minus all down-up flips at the
left end and then dividing by the simulation time. In the
fermionic language, this corresponds to counting the number
of electrons that enter the system minus the number of elec-
trons that leave the system per unit time through the right
electrode �emitter� or the number of electrons that leave the
system minus the number of electrons that enter the system
per unit time through the left electrode �collector�. We also
checked that the current obtained in this way is, up to statis-
tical fluctuations due to finite integration times, equal to the
one computed through Eqs. �15� and �19�. A good conver-
gence for �j� is already reached at Tconv�104, while integra-
tion times T of one order of magnitude longer are required in
order to determine the stationary magnetization profiles �e.g.,
T�3�105 for N=12 in Fig. 6�.

Data presented for the Hubbard model and the spinless
fermion model with N�16 have been obtained with this ap-
proach. For further details of the implementation of the
quantum trajectory approach see Ref. 47.

2. Matrix product operator formalism

We have used the MPO ansatz for spin-1/2 particles. An
arbitrary density matrix � of a chain of N spins 1/2 can be
expanded over all possible products of Pauli operators form-
ing a basis of a 4N dimensional Hilbert space of operators,

��� = �
s�

s���s�� , �A3�

where we used the compact notation �s� =�1
s1 . . .�N

sN, s�
�s1 . . .sN, and si� �0,1 ,2 ,3	, with �0=1, �1=�x, �2=�y,
�3=�z, and where lower indices in the Pauli operators de-
note the site number of the spin on which it operates. The use
of ket notation in ��� outlines the fact that the density matrix
� can be seen as a vector in the operator Hilbert space
spanned by the basis vectors ��s��. In the MPO ansatz, the
expansion coefficients s are expressed as traces of products
of N D�D dimensional matrices Ai

si, i=1, . . . ,N, as

s� = tr�A1
s1 . . . AN

sN� . �A4�

Thus, �density� operator �A3� is completely specified and
thus parametrized in terms of a set of 4N matrices Ai

si, four
for each site i, si=0,1 ,2 ,3. We note that these matrices are
not related to physically observable quantities. The propaga-
tor corresponding to the master equation �Eq. �4�� is written
as a product of propagators for small steps of length dt,
typically dt=10−1. Each small time-step propagator is then
split using a third-order Trotter expansion into parts com-
posed of mutually commuting two-spin terms. These nearest-
neighbor two-spin terms are then basic transformations per-
formed within the MPO ansatz, namely, after each such two-
spin transformation, a singular value decomposition is
performed in order to restore the shape of ansatz �A4�. How-
ever, this step has to be combined with a truncation of the
resulting matrices to a smaller fixed dimension D. Dimension
D is then chosen as a parameter by which we control the
accuracy of the method. Note that the minimal necessary
dimension D is related to the bipartite entanglement of ��� in
the Hilbert space of operators. This implies that MPO

method will fail if the state � builds up strong quantum cor-
relations over large distances. For a review on MPO tech-
niques see Ref. 61, while details of the implementation of the
MPO method in quantum master equations can be found in
Ref. 33.

Starting from an arbitrary initial density matrix ��t0� we
are interested in the asymptotic nonequilibrium steady state
�s reached after a sufficiently long time of simulation, i.e., of
relaxation. Once �s is obtained, various expectation values
can be evaluated. In particular, the spin current is obtained
from Eq. �19� as �j�=Jx tr��s��k

x�k+1
y −�k

y�k+1
x ��. The simula-

tion time that is required to reach a stationary �s in the re-
gime of NDC may greatly depend on the imposed gradient
�driving field�. In the most difficult situations that we studied
here, the relaxation time after which the local current inho-
mogeneities decreased to a few percent was T�4000. Note
that this relaxation time is not directly comparable to the
time needed in the quantum trajectory approach, as there
large T is needed also to perform statistical averaging. In the
MPO approach averaging over Hilbert space is exact, up to
the truncation imposed by finite matrix dimension D. The
main advantage of MPO as compared to other approaches is
that it generally enables simulation of larger systems. For
small drivings one can go up to N�100, while in the present
work, where systems are driven far from equilibrium, we
could reach sizes N�40. Data shown for the spinless fer-
mion model with N�16 have been obtained with MPO tech-
nique.

APPENDIX B: MAPPING FERMIONIC SYSTEMS INTO
SPIN CHAIN MODELS

In this appendix we sketch the main steps of the JWT
�Ref. 62� mapping the Hubbard and t-V fermionic Hamilto-
nians with open boundary conditions into spin-1/2 ladder and
chain models. In particular, we show that the bath operators
injecting or extracting fermions at the two borders of the
system correspond, in the spin-1/2 picture, to operators flip-
ping the edge spins.

We start from the simpler case of the t-V model, described
by Hamiltonian �16�. We first perform a JWT of fermions
into hard-core bosons �aj

† ,aj�, defined by

aj � exp�i��
k�j

nk�cj = ��
k=1

j−1

�1 − 2nk��cj , �B1�

where nj =cj
†cj is the fermion number operator. The operators

aj for different sites commute, but they are not ordinary
bosonic operators since at most one boson is allowed on each
site. One can indeed show that �aj

†�2�0�=0 and, on the same
site, �aj ,aj

†	=1. Moreover, by using

�
k=1

j−1

�1 − 2nk� �
k�=1

j

�1 − 2nk�� = 1 − 2nj �B2�

�it follows from �1−2nk��1−2nk�=1� and the fact that terms
with different site indices commute, we find nj �cj

†cj =aj
†aj

and cj
†cj+1=cj

†�1−2nj�cj+1=aj
†aj+1.

Then we have to transform the hard-core bosons into
spin-1/2 particles in a representation that identifies, at
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each site, the state �0��a�1� with �↓ � and �1��a†�0� with
�↑ �. If � j

 denote the corresponding spin-1/2 particles �which,
of course, obey the standard anticommutation rules
�� j

− ,� j�
+ 	=� j,j��, the explicit mapping is given by

aj
† = � j

+,

aj = � j
−,

2aj
†aj = � j

z + 1. �B3�

This leads quite straightforwardly to the following expres-
sions:

njnj+1 = aj
†ajaj+1

† aj+1 =
1

4
�� j

z� j+1
z + � j

z + � j+1
z + 1� ,

cj
†cj+1 + cj+1

† cj = aj
†aj+1 + aj+1

† aj =
1

2
�� j

x� j+1
x + � j

y� j+1
y � .

�B4�

Substituting them in Eq. �16� with open boundary conditions
we finally get

HS = −
t

2 �
j=1

N−1

�� j
x� j+1

x + � j
y� j+1

y � +
V

4 �
j=1

N−1

� j
z� j+1

z

−
V

4��1
z + �N

z − �N − 1� − 2�
j=1

N

� j
z� , �B5�

which is the Heisenberg Hamiltonian with Jx�−t /2 and
Jz�V /4 plus an on-site transverse uniform magnetic field of
strength V /2 and local transverse fields at the edge spins of
the chain.

The Lindblad operators are mapped into spin operators
that flip the outer spins. Indeed we have c1

†=�1
+ and c1=�1

−

on the left side and

cN
† = ei�NF

�1�
�N

+ �B6�

and cN=ei�NF
�1�
�N

− on the right side �where NF
�k� is the number

of fermions in the leftmost N−k sites of the chain�. Since
after action of the operator �N

+ in Eq. �B6� the rightmost site
is always occupied, we can just as well rewrite Eq. �B6� as

cN
† = − ei�NF

�0�
�N

+ , �B7�

where NF
�0� is the total number of spin up �occupied fermion

states� in the entire lattice.

Now, the crucial observation is that ei�NF
�0�

is an operator
that commutes �anticommutes� with the fermionic algebra
consisting even �odd� number of fermionic operators. Since
all the terms in our Lindblad equations conserve the parity of
density operators,26 i.e., they map, in the Liouville space
sense, the products of even or odd number of fermionic op-
erators cj ,cj

† into products of even or odd number of such
operators, the Lindblad master equation �4� can be restricted
to even-parity density operator subspace only. Thus, the fac-

tor ei�NF
�0�

cancels from the Lindblad equation even though
the number of particles �or magnetization in the spin lan-

guage� is not conserved in an open system. Odd-parity den-
sity operator subspace, which would include terms like
�odd��even�, etc., which change the number of fermions by
an even number, could be studied with a similar �but not
identical� Lindblad equation with an additional minus sign in
all the Lindblad terms. However, since all the physical ob-
servables in question, say A= jk ,nk , . . ., are represented as
products of even number of fermionic operators, only the
even-parity component of the density operator affects the
expectation values �A�=tr��A�. Thus we can safely forget the

phase operator ei�NF
�0�

and map Lindblad operators from fer-
mionic language to spin language in the Lindblad master
equation �Eq. �4�� as cj

†→� j
+ and cj→� j

−, keeping in mind
the issue of operator-space parity in case expectation values
of odd-parity operators would be needed.

The charge current becomes then a spin current, while
1
2 �1+ �� j

z�� is the charge density on site j. We numerically
checked that the addition of two local transverse fields on the
border sites and of a uniform magnetic field does not quali-
tatively affect the NDC effect, as shown in Fig. 17.

We now show that the Hubbard model of Eq. �12� can be
mapped into the Heisenberg spin ladder of Eq. �14�. Follow-
ing the same steps for the t-V model, one first performs a
double JWT of spin-up and spin-down fermions into two
species of hard-core bosons �aj

† ,aj� and �bj
† ,bj�. Such trans-

formation is defined by

aj � exp�i��
k�j

nk,↑�cj,↑, �B8�

bj � exp�i��
k�j

nk,↓�cj,↓. �B9�

Then the hard-core bosons are transformed into two species
of spin-1/2 particles �� j and � j�, in a representation analo-
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FIG. 17. �Color online� Spin current as a function of the driving
strength for the Hamiltonian in Eq. �B5� with t=2, V=8 �that cor-
responds to Jx=1, Jz=2, so that �=2�. In contrast to the standard
XXZ model, here we added a uniform transverse magnetic field of
intensity V /2 plus two transverse fields of strength −V /4 at the
border sites of the Heisenberg chain. The system-bath coupling is
set equal to �=4; the simulation time �QT approach� is T=2.5
�104.
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gous to that of Eqs. �B3�. Proceeding along the same trans-
formations as before and using nj,↑nj,↓= 1

2 �� j
z+1� 1

2 �� j
z+1�, we

finally arrive at spin ladder Hamiltonian �14�. In complete
analogy with the t-V model, the Lindblad operators of Eqs.
�5� and �6� are mapped into spin operators flipping the outer
spins of the ladder.

APPENDIX C: SPIN-SPIN CORRELATIONS

We provide here some numerical data on the behavior of
the steady-state spin-spin correlation functions for the
Heisenberg chain driven far from equilibrium, aimed at in-
vestigating the emergence, in the gapped regime and at
strong driving strength f , of a long-range correlation order.22

The steady-state spin-spin correlation function is defined as

C�i, j� = ��i
z� j

z� − ��i
z��� j

z� , �C1�

where ��i
z� j

z�=tr��i
z� j

z�s� and ��i
z�=tr��i

z�s�, while averages
are taken on the steady state. Results are plotted in Fig. 18.
With increasing f and above f�, a dramatic slowing down of
the correlation decay is apparent. Unfortunately, a more
quantitative understanding of a possible critical behavior in
the large-f regime is at present out of our capabilities since it
would require the analysis of much bigger systems, and this
is numerically not accessible for the model under consider-
ation.

APPENDIX D: SOLUTION OF THE ONE-MAGNON
MODEL

The matrix associated with Hamiltonian �18� in the one-
magnon basis ��1� , �2� , . . . , �N�	 is tridiagonal and reads as
follows:

H = �
� � 0 . . . 0

�  � 0 . . . 0

0 �  � 0 . . . 0

] ]

0 . . . �  �

0 . . . 0 � �

� , �D1�

where ���N−3�Jz, ��N−5�Jz, and ��2Jx. Note that the
overall magnetization is conserved by the XXZ Hamiltonian,
so the states corresponding to the other spin sectors are not
coupled �by the autonomous evolution� to the one-magnon
sector. The eigenvalues of H are given by the roots of the
characteristic polynomial DN�E��det�E1−H�.

First, it is convenient to solve the eigenvalue problem for
=�. We define DN

�0��DN �=�. The following recurrence
relation holds:

Dj
�0� = �E − �Dj−1

�0� − �2Dj−2
�0� . �D2�

The general solution to this difference equation is

Dm
�0� = �m�Aeim� + Be−im�� , �D3�

with

cos � � �E − 

2�
� �D4�

and the constants A and B determined from the conditions

D1
�0� = E −  ,

D2
�0� = �E − �D1

�0� − �2. �D5�

We finally obtain

DN
�0� =

�N sin��N + 1���
sin �

, �D6�

whose solutions are

Em
�0� =  + 2� cos� m�

N + 1
�, m = 1, . . . ,N . �D7�

These eigenvalues are located in the energy band −2���
�E�+2���. Therefore, � is always real and the eigen-
states �“Bloch orbitals”�

��m
�0�� =
 2

N + 1�
k=1

N

sin� �mk

N + 1
��k� , �D8�

corresponding to the eigenvalues Em
�0� are delocalized along

the spin chain.
In the case �� we obtain

DN = DN
�0� + 2� − ��DN−1

�0� + � − ��2DN−2
�0�

=
�N

sin �
�sin��N + 1��� − 2� sin�N�� + �2 sin��N − 1���	 ,

�D9�

where we have used
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FIG. 18. �Color online� Spin-spin correlation function C�i , j� in
a chain with 40 spins for f =0.1 �top row� and f =0.9 �bottom row�;
here we set �=2 and �=4. The code in the left panels denotes
log10�C�i , j��. The right plots display correlation function C�r��i
− j�� along the diagonal denoted by a dashed line in the left plots;
the case with N=20 spins is also shown. Data are obtained using the
MPO ansatz.
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� − 

�
=

Jz

Jx
= � . �D10�

The equation DN=0 can be analytically solved for large N.
There always exist at least N−2 delocalized solutions lying
in the energy band between −2��� and +2���. The “mo-
lecular orbitals” ���� 1


2
���L�� ��R�� appear when ����1.

If ��1, we have �= i � �R�, e �,

��L� 
 1 − e−2 

1 − e−2N �
m=1

N

e−�m−1� �m� ,

��R� 
 1 − e−2 

1 − e−2N �
m=1

N

e−�N−m� �m� . �D11�

The states ��L,R� are centered at sites 1 and N, respectively,
and their localization length �1 / =1 / ln���. The corre-
sponding eigenvalues are given by

E1  EN   + ��� +
1

�
� . �D12�

If ��−1, �= i +�� �R�, e −�,

��L� 
 1 − e−2 

1 − e−2N �
m=1

N

�− 1�me−�m−1� �m� ,

��R� 
 1 − e−2 

1 − e−2N �
m=1

N

�− 1�me−�N−m� �m� . �D13�

These states have localization length �1 / =1 / ln�−��. The
corresponding eigenvalues are again given by Eq. �D12�.

The gap �E between the energy levels E1 and EN shrinks
exponentially with the system size:

�E � ���L��R��  exp�−
N

�
� , �D14�

so that the coherent tunneling between sites 1 and N requires
a time scale that grows exponentially with N. Therefore, for
the purposes of our present investigation we can say that a
spin-flip excitation created at one boundary of a ferromag-
netic domain remains in practice exponentially localized
over a length �=1 / ln���.

Numerical illustrations, for a chain of N=16 spins, of the
appearance, for � ��1, of two states outside the energy band
�−2��� ,+2���� and of the molecular orbitals ����, are
provided in Fig. 19.

Finally, we note that the one-magnon-localization model
discussed in this section has deep similarities with a tight-
binding model discussed in the context of surface physics.63
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