284 research outputs found

    Genetic structure of the long-snouted seahorse, Hippocampus guttulatus, in the Central-Western Mediterranean Sea

    Get PDF
    The seahorse Hippocampus guttulatus reaches its highest abundance in confined environments, where it has unique biological and ecological traits that suggest significant genetic differentiation among populations. In the present study, we aimed to reveal the genetic structure of this species by analysing eight microsatellite loci and a mitochondrial DNA region (cytochrome b) of eight populations from the Central-Western Mediterranean Sea, including lagoon sites. Levels of genetic diversity, as measured by the total number of alleles, number of private alleles, allelic richness and heterozygosity, ranged from low to moderate. The overall value of inbreeding was high, indicating a deficiency in heterozygotes. The haplotype network had a star-like construction, with the most common haplotype present in all populations. Data from the two molecular markers congruently displayed a similar pattern and revealed low genetic differentiation, notwithstanding predictions based on species traits. The observed genetic structure is probably the result of both historical population demographic events and current gene flow. The investigated lagoons, however, revealed a unique genetic profile, which is especially highlighted by the Taranto population. At this site, the results also showed altered values of observed/expected heterozygosity and allelic richness, a characteristic of marginal populations. Our study suggests that lagoon populations should be managed as distinct genetic units

    Combined COI barcode-based methods to avoid mislabelling of threatened species of deep-sea skates

    Get PDF
    Skates are characterised by conservative body morphology which hampers identification and leads to frequent taxonomic confusion and market mislabelling. Accurate specimen classification is crucial for reliable stock assessments and effective conservation plans, otherwise the risk of extinction could be unnoticed. The misclassification issue is evident for the genus Dipturus, distributed worldwide, from the continental shelf and slope to the deep sea. In this study, barcode cytochrome oxidase I gene (COI) sequences were used along with species delimitation and specimen assignment methods to improve taxonomy and zoogeography of species of conservation interest inhabiting the Atlantic Ocean and Mediterranean Sea. In this study, we provided new evidence of the occurence of D. nidarosiensis in the Central-Western Mediterranean Sea and the lack of Atlantic-Mediterranean genetic divergence. The Atlantic endangered species D. laevis and D. batis clustered together under the same molecular operational taxonomic unit (MOTU) with any delimitation methods used, while the assignment approach correctly discriminated specimens into the two species. These results provided evidence that the presence of the barcode gap is not an essential predictor of identification success, but the use of different approaches is crucially needed for specimen classification, especially when threshold- or tree-based methods result less powerful. The analyses also showed how different putative, vulnerable, species dwelling across South-Western Atlantic and South-Eastern Pacific are frequently misidentified in public sequence repositories. Our study emphasised the limits associated to public databases, highlighting the urgency to verify and implement the information deposited therein in order to guarantee accurate species identification and thus effective conservation measures for deep-sea skates

    Strongly structured populations and reproductive habitat fragmentation increase the vulnerability of the Mediterranean starry ray Raja asterias (Elasmobranchii, Rajidae)

    Get PDF
    The Mediterranean starry ray (Raja asterias) populations within the Mediterranean Sea are susceptible to high rates of bycatch in the multispecies trawl fisheries. Understanding its population structure and identifying critical habitats are crucial for assessing species vulnerability and setting the groundwork for specific management measures to prevent population decline. To assess the population structure of R. asterias in the Mediterranean, the genetic variation in nine population samples at one mitochondrial marker and eight nuclear microsatellite loci was analysed. Moreover, 172 egg cases collected in the Strait of Sicily were identified at species level using integrated molecular and morphological approaches. Genetic analyses revealed that the Mediterranean starry ray comprises three distinct units inhabiting the western, the central-western, and the central-eastern areas of the Mediterranean. An admixture zone occurs in the Strait of Sicily and the Ionian Sea, where individuals of the central-western and central-eastern population units intermingle. The joint morphometric–genetic analyses of rajid egg cases confirmed the presence of more than one species in the admixture area, with a predominance of egg cases laid by R. asterias. DNA barcoding revealed that egg cases and embryos of R. asterias shared several haplotypes with adult individuals from the central-western and central-eastern Mediterranean Sea, revealing that females of both populations laid numerous eggs in this area. According to these findings, detailed taxonomic determination of egg cases, when combined with seasonal migration studies, could improve the capability to identify important spawning or nursery areas for the Mediterranean starry ray, particularly in those admixture zones relevant to maintaining genetic diversity. Finally, these new insights should be considered to update the Action Plan for the Conservation of Cartilaginous Fishes in the Mediterranean Sea with effective measures to reduce the impact of skate bycatch in trawling and safeguard egg cases in nursery areas

    In Vitro Synergism of Colistin and N-acetylcysteine against Stenotrophomonas maltophilia

    Get PDF
    Stenotrophomonas maltophilia is an emerging global opportunistic pathogen, responsible for a wide range of human infections, including respiratory tract infections. Intrinsic multidrug resistance and propensity to form biofilms make S. maltophilia infections recalcitrant to treatment. Colistin is among the second-line options in case of difficult-to-treat S. maltophilia infections, with the advantage of being also administrable by nebulization. We investigated the potential synergism of colistin in combination with N-acetylcysteine (NAC) (a mucolytic agent with antioxidant and anti-inflammatory properties) against S. maltophilia grown in planktonic phase and biofilm. Eighteen S. maltophilia clinical isolates (comprising three isolates from cystic fibrosis (CF) and two trimethoprim-sulfamethoxazole (SXT)-resistant strains) were included. Checkerboard assays showed a synergism of colistin/NAC combinations against the strains with colistin Minimum Inhibitory Concentration (MIC) >2 \ub5g/mL (n = 13), suggesting that NAC could antagonize the mechanisms involved in colistin resistance. Nonetheless, time-kill assays revealed that NAC might potentiate colistin activity also in case of lower colistin MICs. A dose-dependent potentiation of colistin activity by NAC was also clearly observed against S. maltophilia biofilms, also at sub-MIC concentrations. Colistin/NAC combinations, at concentrations likely achievable by topical administration, might represent a valid option for the treatment of S. maltophilia respiratory infections and should be examined further

    Pliocene colonization of the Mediterranean by Great White Shark inferred from fossil records, historical jaws, phylogeographic and divergence time analyses

    Get PDF
    Aim: Determine the evolutionary origin of the heretofore poorly characterized contemporary Great White Shark (GWS; Carcharodon carcharias) of the Mediterranean Sea, using phylogenetic and dispersal vicariance analyses to trace back its global palaeo-migration pattern. Location: Mediterranean Sea. Taxon: Carcharodon carcharias. Methods: We have built the largest mitochondrial DNA control region (CR) sequence dataset for the Mediterranean GWS from referenced historical jaws spanning the 19th and 20th centuries. Mediterranean and global GWS CR sequences were analysed for genetic diversity, phylogenetic relationships and divergence time. A Bayes factor approach was used to assess two scenarios of GWS lineage divergence and emergence of the Mediterranean GWS line using fossil records and palaeo-geographical events for calibration of the molecular clock. Results: The results confirmed a closer evolutionary relationship between Mediterranean GWS and populations from Australia–New Zealand and the North-eastern Pacific coast rather than populations from South African and North-western Atlantic. The Mediterranean GWS lineage showed the lowest genetic diversity at the global level, indicating its recent evolutionary origin. An evaluation of various divergence scenarios determined the Mediterranean GWS lineage most likely appeared some 3.23 million years ago by way dispersal/vicariance from Australian/Pacific palaeo-populations. Main conclusion: Based on the fossil records, phylogeographic patterns and divergence time, we revealed that the Mediterranean GWS population originated in the Pliocene following the Messinian Salinity Crisis. Colonization of the Mediterranean by GWS likely occurred via an eastward palaeo-migration of Australian/eastern Pacific elements through the Central American Seaway, before the complete closure of the Isthmus of Panama. This Pliocene origin scenario contrasts with a previously proposed scenario in which Australian GWS colonized the Mediterranean via antipodean northward migration resulting from navigational errors from South Africa during Quaternary climatic oscillations

    Fatal respiratory infection due to ST308 VIM-1-producing Pseudomonas aeruginosa in a lung transplant recipient : case report and review of the literature

    Get PDF
    Background: Data regarding the prevalence of metallo-\u3b2-lactamases (MBLs) among Pseudomonas aeruginosa isolates in cystic fibrosis patients are scarce. Furthermore, there is limited knowledge on the effect of MBL production on patient outcomes. Here we describe a fatal respiratory infection due to P. aeruginosa producing VIM-type MBLs in a lung transplant recipient and the results of the subsequent epidemiological investigation. Case presentation: P. aeruginosa isolates collected in the index patient and among patients temporally or spatially linked with the index patient were analyzed in terms of antibiotic susceptibility profile and MBL production. Whole-genome sequencing and phylogenetic reconstruction were also performed for all P. aeruginosa isolates producing VIM-type MBLs. A VIM-producing P. aeruginosa strain was identified in a lung biopsy of a lung transplant recipient with cystic fibrosis. The strain was VIM-1-producer and belonged to the ST308. Despite aggressive treatment, the transplant patient succumbed to the pulmonary infection due to the ST308 strain. A VIM-producing P. aeruginosa strain was also collected from the respiratory samples of a different cystic fibrosis patient attending the same cystic fibrosis center. This isolate harbored the blaVIM-2 gene and belonged to the clone ST175. This patient did not experience an adverse outcome. Conclusions: This is the first description of a fatal infection due to P. aeruginosa producing VIM-type MBLs in a lung transplant recipient. The circulation of P. aeruginosa isolates harboring MBLs pose a substantial risk to the cystic fibrosis population due to the limited therapeutic options available and their spreading potential

    Ancient DNA SNP-panel data suggests stability in bluefin tuna genetic diversity despite centuries of fluctuating catches in the eastern Atlantic and Mediterranean

    Get PDF
    Atlantic bluefin tuna (Thunnus thynnus; BFT) abundance was depleted in the late 20th and early 21st century due to overfishing. Historical catch records further indicate that the abundance of BFT in the Mediterranean has been fluctuating since at least the 16th century. Here we build upon previous work on ancient DNA of BFT in the Mediterranean by comparing contemporary (2009–2012) specimens with archival (1911–1926) and archaeological (2nd century BCE–15th century CE) specimens that represent population states prior to these two major periods of exploitation, respectively. We successfully genotyped and analysed 259 contemporary and 123 historical (91 archival and 32 archaeological) specimens at 92 SNP loci that were selected for their ability to differentiate contemporary populations or their association with core biological functions. We found no evidence of genetic bottlenecks, inbreeding or population restructuring between temporal sample groups that might explain what has driven catch fluctuations since the 16th century. We also detected a putative adaptive response, involving the cytoskeletal protein synemin which may be related to muscle stress. However, these results require further investigation with more extensive genome-wide data to rule out demographic changes due to overfishing, and other natural and anthropogenic factors, in addition to elucidating the adaptive drivers related to these

    Call me by my name: unravelling the taxonomy of the gulper shark genus Centrophorus in the Mediterranean Sea through an integrated taxonomic approach

    Get PDF
    The current shift of fishery efforts towards the deep sea is raising concern about the vulnerability of deep-water sharks, which are often poorly studied and characterized by problematic taxonomy. For instance, in the Mediterranean Sea the taxonomy of genus Centrophorus has not been clearly unravelled yet. Since proper identification of the species is fundamental for their correct assessment and management, this study aims at clarifying the taxonomy of this genus in the Mediterranean Basin through an integrated taxonomic approach. We analysed a total of 281 gulper sharks (Centrophorus spp.) collected from various Mediterranean, Atlantic and Indian Ocean waters. Molecular data obtained from cytochrome c oxidase subunit I (COI), 16S ribosomal RNA (16S), NADH dehydrogenase subunit 2 (ND2) and a portion of a nuclear 28S ribosomal DNA gene region (28S) have highlighted the presence of a unique mitochondrial clade in the Mediterranean Sea. The morphometric results confirmed these findings, supporting the presence of a unique and distinct morphological group comprising all Mediterranean individuals. The data strongly indicate the occurrence of a single Centrophorus species in the Mediterranean, ascribable to C. cf. uyato, and suggest the need for a revision of the systematics of the genus in the area.En prens
    • …
    corecore