1,854 research outputs found

    Is the energy density of the ground state of the sine-Gordon model unbounded from below for beta^2 > 8 pi ?

    Full text link
    We discuss Coleman's theorem concerning the energy density of the ground state of the sine-Gordon model proved in Phys. Rev. D 11, 2088 (1975). According to this theorem the energy density of the ground state of the sine-Gordon model should be unbounded from below for coupling constants beta^2 > 8 pi. The consequence of this theorem would be the non-existence of the quantum ground state of the sine-Gordon model for beta^2 > 8 pi. We show that the energy density of the ground state in the sine-Gordon model is bounded from below even for beta^2 > 8 pi. This result is discussed in relation to Coleman's theorem (Comm. Math. Phys. 31, 259 (1973)), particle mass spectra and soliton-soliton scattering in the sine-Gordon model.Comment: 22 pages, Latex, no figures, revised according to the version accepted for publication in Journal of Physics

    On the estimate of the sigma^(I = 1)_(KN)(0)-term value from the energy level shift of kaonic hydrogen in the ground state

    Full text link
    Using the experimental data on the energy level shift of kaonic hydrogen in the ground state (the DEAR Collaboration, Phys. Rev. Lett. 94, 212302 (2005)) and the theoretical value of the energy level shift, calculated within the phenomenological quantum field theoretic approach to the description of strong low-energy anti-K N and anti-K NN interactions developed at Stefan Meyer Institut fuer subatomare Physik in Vienna, we estimate the value of the sigma^(I = 1)_(KN)(0)-term of low-energy anti-K N scattering. We get sigma^(I = 1)_(KN)(0) = (433 +/- 85) MeV. This testifies the absence of strange quarks in the proton structure.Comment: 7 pages, no figure

    On renormalizability of the massless Thirring model

    Full text link
    We discuss the renormalizability of the massless Thirring model in terms of the causal fermion Green functions and correlation functions of left-right fermion densities. We obtain the most general expressions for the causal two-point Green function and correlation function of left-right fermion densities with dynamical dimensions of fermion fields, parameterised by two parameters. The region of variation of these parameters is constrained by the positive definiteness of the norms of the wave functions of the states related to components of the fermion vector current. We show that the dynamical dimensions of fermion fields calculated for causal Green functions and correlation functions of left-right fermion densities can be made equal. This implies the renormalizability of the massless Thirring model in the sense that the ultra-violet cut-off dependence, appearing in the causal fermion Green functions and correlation functions of left-right fermion densities, can be removed by renormalization of the wave function of the massless Thirring fermion fields only.Comment: 17 pages, Latex, the contribution of fermions with opposite chirality is added,the parameterisation of fermion determinant by two parameters is confirmed,it is shown that dynamical dimensions of fermion fields calculated from different correlation functions can be made equal.This allows to remove the dependence on the ultra-violet cut-off by the renormalization of the wave function of Thirring fermion fields onl

    Model-Dependence of Shapiro Time Delay and the "Speed of Gravity/Speed of Light" Controversy

    Full text link
    Fomalont and Kopeikin have recently succeeded in measuring the velocity-dependent component of the Shapiro time delay of light from a quasar passing behind Jupiter. While there is general agreement that this observation tests the gravitomagnetic properties of the gravitational field, a controversy has emerged over the question of whether the results depend on the speed of light, cc, or the speed of gravity, cgc_g. By analyzing the Shapiro time delay in a set of ``preferred frame'' models, I demonstrate that this question is ill-posed: the distinction can only be made in the context of a class of theories in which c≠cgc\ne c_g, and the answer then depends on the specific class of theories one chooses. It remains true, however, that for a large class of theories ``close enough'' to general relativity, the leading contribution to the time delay depends on cc and not cgc_g; within this class, observations are thus not yet accurate enough to measure the speed of gravity.Comment: 12 pages, LaTeX; v2: added discussion of present observational limits, and of relative importance of various contributions to time delay; new references; v3: minor clarifications in response to refere

    Macroscopic models for superconductivity

    Get PDF
    This paper reviews the derivation of some macroscopic models for superconductivity and also some of the mathematical challenges posed by these models. The paper begins by exploring certain analogies between phase changes in superconductors and those in solidification and melting. However, it is soon found that there are severe limitations on the range of validity of these analogies and outside this range many interesting open questions can be posed about the solutions to the macroscopic models

    The DLV System for Knowledge Representation and Reasoning

    Full text link
    This paper presents the DLV system, which is widely considered the state-of-the-art implementation of disjunctive logic programming, and addresses several aspects. As for problem solving, we provide a formal definition of its kernel language, function-free disjunctive logic programs (also known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express optimization problems. We then illustrate the usage of DLV as a tool for knowledge representation and reasoning, describing a new declarative programming methodology which allows one to encode complex problems (up to Δ3P\Delta^P_3-complete problems) in a declarative fashion. On the foundational side, we provide a detailed analysis of the computational complexity of the language of DLV, and by deriving new complexity results we chart a complete picture of the complexity of this language and important fragments thereof. Furthermore, we illustrate the general architecture of the DLV system which has been influenced by these results. As for applications, we overview application front-ends which have been developed on top of DLV to solve specific knowledge representation tasks, and we briefly describe the main international projects investigating the potential of the system for industrial exploitation. Finally, we report about thorough experimentation and benchmarking, which has been carried out to assess the efficiency of the system. The experimental results confirm the solidity of DLV and highlight its potential for emerging application areas like knowledge management and information integration.Comment: 56 pages, 9 figures, 6 table

    Morphologies of z~0.7 AGN host galaxies in CANDELS : no trend of merger incidence with AGN luminosity

    Get PDF
    PS would like to acknowledge funding through grant ASI I/005/11/0. DKoo would like to acknowledge funding through grant NSF AST-0808133. SJ acknowledges financial support from the EC through an ERC grant StG-257720.The processes that trigger active galactic nuclei (AGN) remain poorly understood. While lower luminosity AGN may be triggered by minor disturbances to the host galaxy, stronger disturbances are likely required to trigger luminous AGN. Major wet mergers of galaxies are ideal environments for AGN triggering since they provide large gas supplies and galaxy scale torques. There is however little observational evidence for a strong connection between AGN and major mergers. We analyse the morphological properties of AGN host galaxies as a function of AGN and host galaxy luminosity and compare them to a carefully matched sample of control galaxies. AGN are X-ray selected in the redshift range 0.5 < z < 0.8 and have luminosities 41 ≲ log (LX [erg s−1]) ≲ 44.5. ‘Fake AGN’ are simulated in the control galaxies by adding point sources with the magnitude of the matched AGN. We find that AGN host and control galaxies have comparable asymmetries, Sérsic indices and ellipticities at rest frame ∼950 nm. AGN host galaxies show neither higher average asymmetries nor higher fractions of very disturbed objects. There is no increase in the prevalence of merger signatures with AGN luminosity. At 95 per cent confidence we find that major mergers are responsible for <6 per cent of all AGN in our sample as well as <40 per cent of the highest luminosity AGN (log  (LX [erg s−1]) ∼ 43.5). Major mergers therefore either play only a very minor role in the triggering of AGN in the luminosity range studied or time delays are too long for merger features to remain visible.PostprintPeer reviewe

    Gravitational signals emitted by a point mass orbiting a neutron star: a perturbative approach

    Full text link
    We compute the energy spectra of the gravitational signals emitted when a pointlike mass moves on a closed orbit around a non rotating neutron star, inducing a perturbation of its gravitational field and its internal structure. The Einstein equations and the hydrodynamical equations are perturbed and numerically integrated in the frequency domain. The results are compared with the energy spectra computed by the quadrupole formalism which assumes that both masses are pointlike, and accounts only for the radiation emitted because the orbital motion produces a time dependent quadrupole moment. The results of our perturbative approach show that, in general, the quadrupole formalism overestimates the amount of emitted radiation, especially when the two masses are close. However, if the pointlike mass is allowed to move on an orbit so tight that the keplerian orbital frequency resonates with the frequency of the fundamental quasi-normal mode of the star (2w_K=w_f), this mode can be excited and the emitted radiation can be considerably larger than that computed by the quadrupole approach.Comment: 36 pages, 7 figures, submimtted to Phys. Rev.

    T-PHOT: A new code for PSF-matched, prior-based, multiwavelength extragalactic deconfusion photometry

    Get PDF
    We present T-PHOT, a publicly available software aimed at extracting accurate photometry from low-resolution images of deep extragalactic fields, where the blending of sources can be a serious problem for the accurate and unbiased measurement of fluxes and colours. T-PHOT has been developed within the ASTRODEEP project and it can be considered as the next generation to TFIT, providing significant improvements above it and other similar codes. T-PHOT gathers data from a high-resolution image of a region of the sky, and uses it to obtain priors for the photometric analysis of a lower resolution image of the same field. It can handle different types of datasets as input priors: i) a list of objects that will be used to obtain cutouts from the real high-resolution image; ii) a set of analytical models; iii) a list of unresolved, point-like sources, useful e.g. for far-infrared wavelength domains. We show that T-PHOT yields accurate estimations of fluxes within the intrinsic uncertainties of the method, when systematic errors are taken into account (which can be done thanks to a flagging code given in the output). T-PHOT is many times faster than similar codes like TFIT and CONVPHOT (up to hundreds, depending on the problem and the method adopted), whilst at the same time being more robust and more versatile. This makes it an optimal choice for the analysis of large datasets. In addition we show how the use of different settings and methods significantly enhances the performance. Given its versatility and robustness, T-PHOT can be considered the preferred choice for combined photometric analysis of current and forthcoming extragalactic optical to far-infrared imaging surveys. [abridged]Comment: 23 pages, 20 figures, 2 table

    Galaxy Zoo: Are Bars Responsible for the Feeding of Active Galactic Nuclei at 0.2 < z < 1.0?

    Get PDF
    We present a new study investigating whether active galactic nuclei (AGN) beyond the local universe are preferentially fed via large-scale bars. Our investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the AEGIS, COSMOS, and GOODS-S surveys to create samples of face-on, disc galaxies at 0.2 < z < 1.0. We use a novel method to robustly compare a sample of 120 AGN host galaxies, defined to have 10^42 erg/s < L_X < 10^44 erg/s, with inactive control galaxies matched in stellar mass, rest-frame colour, size, Sersic index, and redshift. Using the GZH bar classifications of each sample, we demonstrate that AGN hosts show no statistically significant enhancement in bar fraction or average bar likelihood compared to closely-matched inactive galaxies. In detail, we find that the AGN bar fraction cannot be enhanced above the control bar fraction by more than a factor of two, at 99.7% confidence. We similarly find no significant difference in the AGN fraction among barred and non-barred galaxies. Thus we find no compelling evidence that large-scale bars directly fuel AGN at 0.2<z<1.0. This result, coupled with previous results at z=0, implies that moderate-luminosity AGN have not been preferentially fed by large-scale bars since z=1. Furthermore, given the low bar fractions at z>1, our findings suggest that large-scale bars have likely never directly been a dominant fueling mechanism for supermassive black hole growth.Comment: 13 pages, 5 figures, 2 tables, accepted by MNRA
    • …
    corecore