9,856 research outputs found

    Science leadership for tomorrow: The role of schools of public affairs and universities in meeting needs of public science agencies

    Get PDF
    Recommendations and requirements for the preparation of personnel with some scientific or technological background to enter fields of public policy and administration are reported. University efforts to provide science administration graduate programs are outlined and increased cooperation between government and university resources is outlined

    Metadynamic sampling of the free energy landscapes of proteins coupled with a Monte Carlo algorithm

    Full text link
    Metadynamics is a powerful computational tool to obtain the free energy landscape of complex systems. The Monte Carlo algorithm has proven useful to calculate thermodynamic quantities associated with simplified models of proteins, and thus to gain an ever-increasing understanding on the general principles underlying the mechanism of protein folding. We show that it is possible to couple metadynamics and Monte Carlo algorithms to obtain the free energy of model proteins in a way which is computationally very economical.Comment: Submitted to Gen

    Studio idrogeologico delle acque minerali dell'area di Zinnigas(Siliqua, Sardegna SW)

    Get PDF
    In the area of Zinnigas (near Siliqua, Sardegna SW) a limited extension drainage basin is present with numerous springs. The area is center of activity for catchment and bottling of the mineral waters. We think that the dimension of the ground water basin is greater than hydrologic basin. The aim of the study is to improve the knowledges on the basin and particularly:to settle the formalities of circulation of the underground waters; to reconstruct the acquifer geometry;to draw the main hydrologic parameters

    Selection Of A Novel Aptamer Against Vitronectin Using Capillary Electrophoresis And Next Generation Sequencing

    Get PDF
    Breast cancer (BC) results in ≃40,000 deaths each year in the United States and even among survivors treatment of the disease may have devastating consequences, including increased risk for heart disease and cognitive impairment resulting from the toxic effects of chemotherapy. Aptamer-mediated drug delivery can contribute to improved treatment outcomes through the selective delivery of chemotherapy to BC cells, provided suitable cancer-specific antigens can be identified. We report here the use of capillary electrophoresis in conjunction with next generation sequencing to develop the first vitronectin (VN) binding aptamer (VBA-01; Kd 405 nmol/l, the first aptamer to vitronectin (VN; Kd = 405 nmol/l), a protein that plays an important role in wound healing and that is present at elevated levels in BC tissue and in the blood of BC patients relative to the corresponding nonmalignant tissues. We used VBA-01 to develop DVBA-01, a dimeric aptamer complex, and conjugated doxorubicin (Dox) to DVBA-01 (7:1 ratio) using pH-sensitive, covalent linkages. Dox conjugation enhanced the thermal stability of the complex (60.2 versus 46.5°C) and did not decrease affinity for the VN target. The resulting DVBA-01-Dox complex displayed increased cytotoxicity to MDA-MB-231 BC cells that were cultured on plasticware coated with VN (1.8 × 10⁻⁶mol/l) relative to uncoated plates (2.4 × 10⁻⁶ mol/l), or plates coated with the related protein fibronectin (2.1 × 10⁻⁶ mol/l). The VBA-01 aptamer was evaluated for binding to human BC tissue using immunohistochemistry and displayed tissue specific binding and apparent association with BC cells. In contrast, a monoclonal antibody that preferentially binds to multimeric VN primarily stained extracellular matrix and vessel walls of BC tissue. Our results indicate a strong potential for using VN-targeting aptamers to improve drug delivery to treat BC

    Fluctuation-Induced Casimir Forces in Granular Fluids

    Get PDF
    We have numerically investigated the behavior of driven non-cohesive granular media and found that two fixed large intruder particles, immersed in a sea of small particles, experience, in addition to a short range depletion force, a long range repulsive force. The observed long range interaction is fluctuation-induced and we propose a mechanism similar to the Casimir effect that generates it: the hydrodynamic fluctuations are geometrically confined between the intruders, producing an unbalanced renormalized pressure. An estimation based on computing the possible Fourier modes explains the repulsive force and is in qualitative agreement with the simulations.Comment: 4 pages, 3 figures. Accepted in Phys. Rev. Letter

    Effects of temperature and plant diversity on orthopterans and leafhoppers in calcareous dry grasslands

    Get PDF
    Abstract: In mountains, current land-use changes are altering plant communities of semi-natural grasslands with potential cascading effects on associated herbivores. Besides vegetation changes, temperature is also a key driver of insect diversity, and in the European Alps is predicted to increase by 0.25\ua0\ub0C per decade. Understanding herbivore responses to temperature and plant composition changes in mountain environments is of increasing importance. Our study aims at investigating the response to temperature and plant diversity and composition of two key herbivore groups (orthopterans and leafhoppers) belonging to contrasting feeding guilds (chewers vs. sap-feeders). We hypothesized that orthopteran diversity would be driven by temperature while leafhoppers by plant community composition. We selected 15 dry calcareous grasslands ranging from 100 to 1330\ua0m a.s.l. along two independent gradients of plant diversity and temperature. We sampled orthopteran and leafhopper species richness and abundance by sweep-netting. Consistent with their low feeding specialisation, orthopteran species richness and community composition were only driven by temperature. By contrast, leafhopper species richness was not affected by temperature nor by plant diversity but leafhopper community composition was strongly influenced by plant species composition. This response can be explained by the higher host feeding specialisation of many leafhopper species. Species rarity and mobility did not change the response of the diversity of both groups, but orthopteran abundance increased with temperature only for highly mobile species. Altogether, our results suggest that future responses of grassland herbivores to vegetation changes and temperature warming are highly variable and depend on the feeding strategy and specialisation of the focal herbivore group. Implications for insect conservation: Leafhoppers emerged to be particularly sensitive to potential management or climate-induced change in vegetation composition, while orthopterans are expected to respond directly to temperature warming due to their relaxed association with plant community diversity and composition

    Real-Time Monitoring of Temperature-Dependent Structural Transitions in DNA Nanomechanical Resonators: Unveiling the DNA-Ligand Interactions for Biomedical Applications

    Get PDF
    Despite being widely recognized as of paramount importance in molecular biology, real-time monitoring of structural transitions in DNA complexes is currently limited to complex techniques and chemically modified oligonucleotides. Here, we show that nanomechanical resonators made of different DNA complexes, such as pristine dsDNA, ssDNA, and DNA intercalated with dye molecules or chemotherapeutic agents, are characterized by unique fingerprint curves when their flexural resonance frequency is tracked as a function of temperature. Such frequency shifts can be successfully used to monitor structural variations in DNA complexes, such as B-to-A form and helix-to-coil transitions, thus opening implications in both environmental studies─for example, trucking the effects of heavy metal exposure on human or vegetable DNA molecules─and in vitro experiments for the evaluation of the effects of drugs on patient DNA

    Extreme flooding events in coastal lagoons: seawater parameters and rainfall over a six-year period in the Mar Menor (SE Spain)

    Get PDF
    Climate change is one of the main problems currently strongly conditioning ecosystems all over the world. Coastal lagoons are amongst the most vulnerable habitats, and they are undergoing extensive human impact due to their high production rates and the close proximity of urban and agricultural centers. The Mar Menor, the largest saltwater lagoon in Europe, is an example of a highly impacted ecosystem. In December 2016 and September 2019, climate change-induced DANA (upper-level isolated atmospheric depression) flooding events took place there, temporarily altering the lagoon oceanographic properties. Data gathered throughout the lagoon (11 stations inside and 1 outside the lagoon) from 2016 to 2021 were analyzed in order to assess the variability of seawater parameters: salinity, density, chlorophyll-a, turbidity, and dissolved oxygen, due to DANA events. Results showed a change in seawater parameters that were reestablished at different rates, 4 and 10 months in 2016 and 2019, respectively, following a description of the environmental conditions and effects that have been reported after extreme rainfall in the lagoon. The amount of rainfall correlated with changes in the analyzed seawater parameters, such as an increase in turbidity and chlorophyll-a values. Furthermore, turbidity correlated with chlorophyll-a and oxygen saturation, while density correlated with salinity. Such extreme weather events are worsened by climate change, growing more frequent and between shorter intervals in time. In order to decelerate ecosystem decline, comprehensive management plans are needed to address the various factors that might add to anthropic impacts in natural environments

    Solid state hydrogen storage in alanates and alanate-based compounds: A review

    Get PDF
    The safest way to store hydrogen is in solid form, physically entrapped in molecular form in highly porous materials, or chemically bound in atomic form in hydrides. Among the different families of these compounds, alkaline and alkaline earth metals alumino-hydrides (alanates) have been regarded as promising storing media and have been extensively studied since 1997, when Bogdanovic and Schwickardi reported that Ti-doped sodium alanate could be reversibly dehydrogenated under moderate conditions. In this review, the preparative methods; the crystal structure; the physico-chemical and hydrogen absorption-desorption properties of the alanates of Li, Na, K, Ca, Mg, Y, Eu, and Sr; and of some of the most interesting multi-cation alanates will be summarized and discussed. The most promising alanate-based reactive hydride composite (RHC) systems developed in the last few years will also be described and commented on concerning their hydrogen absorption and desorption performance
    corecore