558 research outputs found
Deep imaging survey of the environment of Alpha Centauri - II. CCD imaging with the NTT-SUSI2 camera
Context: The nearby pair of solar-type stars Alpha Centauri is a favorable
target for an imaging search for extrasolar planets. Indications exist that the
gravitational mass of Alpha Cen B could be higher than its modeled mass, the
difference being consistent with a substellar companion of a few tens of
Jupiter masses. However, Alpha Centauri usually appears in star catalogues
surrounded by a large void area, due to the strong diffused light. Aims: We
searched for faint comoving companions to Alpha Cen located at angular
distances of the order of a few tens of arcseconds, up to 2-3 arcmin. As a
secondary objective, we built a catalogue of the detected background sources.
Methods: In order to complement our adaptive optics search at small angular
distances (Paper I), we used atmosphere limited CCD imaging from the NTT-SUSI2
instrument in the Bessel V, R, I, and Z bands. Results: We present the results
of our search in the form of a catalogue of the detected objects inside a 5.5
arcmin box around this star. A total of 4313 sources down to mV~24 and mI~22
were detected from this wide-field survey. We extracted the infrared photometry
of part of the detected sources from archive images of the 2MASS survey (JHK
bands). We investigate briefly the nature of the detected sources, many of them
presenting extremely red color indices (V-K > 14). Conclusions: We did not
detect any companion to Alpha Centauri between 100 and 300 AU, down to a
maximum mass of ~15 times Jupiter. We also mostly exclude the presence of a
companion more massive than 30 MJup between 50 and 100 AU.Comment: Accepted for publication as a Research Note in A&
Theoretical fits of the \delta Cephei light, radius and radial velocity curves
We present a theoretical investigation of the light, radius and radial
velocity variations of the prototype Cephei. We find that the best fit
model accounts for luminosity and velocity amplitudes with an accuracy better
than , and for the radius amplitude with an accuracy of .
The chemical composition of this model suggests a decrease in both helium (0.26
vs 0.28) and metal (0.01 vs 0.02) content in the solar neighborhood. Moreover,
distance determinations based on the fit of light curves agree at the
level with the trigonometric parallax measured by the Hubble Space
Telescope (HST). On the other hand, distance determinations based on angular
diameter variations, that are independent of interstellar extinction and of the
-factor value, indicate an increase of the order of 5% in the HST parallax.Comment: accepted for publication on ApJ Letter
The night-sky at the Calar Alto Observatory
We present a characterization of the main properties of the night-sky at the
Calar Alto observatory for the time period between 2004 and 2007. We use
optical spectrophotometric data, photometric calibrated images taken in
moonless observing periods, together with the observing conditions regularly
monitored at the observatory, such as atmospheric extinction and seeing. We
derive, for the first time, the typical moonless night-sky optical spectrum for
the observatory. The spectrum shows a strong contamination by different
pollution lines, in particular from Mercury lines, which contribution to the
sky-brightness in the different bands is of the order of ~0.09 mag, ~0.16 mag
and ~0.10 mag in B, V and R respectively. The zenith-corrected values of the
moonless night-sky surface brightness are 22.39, 22.86, 22.01, 21.36 and 19.25
mag arcsec^-2 in U, B, V, R and I, which indicates that Calar Alto is a
particularly dark site for optical observations up to the I-band. The fraction
of astronomical useful nights at the observatory is ~70%, with a ~30% of
photometric nights. The typical extinction at the observatory is k_V~0.15 mag
in the Winter season, with little dispersion. In summer the extinction has a
wider range of values, although it does not reach the extreme peaks observed at
other sites. The median seeing for the last two years (2005-6) was ~0.90",
being smaller in the Summer (~0.87") than in the Winter (~0.96"). We conclude
in general that after 26 years of operations Calar Alto is still a good
astronomical site, being a natural candidate for future large aperture optical
telescopes.Comment: 16 pages, 5 figures, accepted for publishing in the Publications of
Astronomical Society of the Pacific (PASP
Collodictyon—An Ancient Lineage in the Tree of Eukaryotes
The current consensus for the eukaryote tree of life consists of several large assemblages (supergroups) that are hypothesized to describe the existing diversity. Phylogenomic analyses have shed light on the evolutionary relationships within and between supergroups as well as placed newly sequenced enigmatic species close to known lineages. Yet, a few eukaryote species remain of unknown origin and could represent key evolutionary forms for inferring ancient genomic and cellular characteristics of eukaryotes. Here, we investigate the evolutionary origin of the poorly studied protist Collodictyon (subphylum Diphyllatia) by sequencing a cDNA library as well as the 18S and 28S ribosomal DNA (rDNA) genes. Phylogenomic trees inferred from 124 genes placed Collodictyon close to the bifurcation of the “unikont” and “bikont” groups, either alone or as sister to the potentially contentious excavate Malawimonas. Phylogenies based on rDNA genes confirmed that Collodictyon is closely related to another genus, Diphylleia, and revealed a very low diversity in environmental DNA samples. The early and distinct origin of Collodictyon suggests that it constitutes a new lineage in the global eukaryote phylogeny. Collodictyon shares cellular characteristics with Excavata and Amoebozoa, such as ventral feeding groove supported by microtubular structures and the ability to form thin and broad pseudopods. These may therefore be ancient morphological features among eukaryotes. Overall, this shows that Collodictyon is a key lineage to understand early eukaryote evolution
The evolution of photosynthesis in chromist algae through serial endosymbioses
Chromist algae include diverse photosynthetic organisms of great ecological and social importance. Despite vigorous research efforts, a clear understanding of how various chromists acquired photosynthetic organelles has been complicated by conflicting phylogenetic results, along with an undetermined number and pattern of endosymbioses, and the horizontal movement of genes that accompany them. We apply novel statistical approaches to assess impacts of endosymbiotic gene transfer on three principal chromist groups at the heart of long-standing controversies. Our results provide robust support for acquisitions of photosynthesis through serial endosymbioses, beginning with the adoption of a red alga by cryptophytes, then a cryptophyte by the ancestor of ochrophytes, and finally an ochrophyte by the ancestor of haptophytes. Resolution of how chromist algae are related through endosymbioses provides a framework for unravelling the further reticulate history of red algal-derived plastids, and for clarifying evolutionary processes that gave rise to eukaryotic photosynthetic diversity
Phylogenomics Reshuffles the Eukaryotic Supergroups
Background. Resolving the phylogenetic relationships between eukaryotes is an ongoing challenge of evolutionary biology. In recent years, the accumulation of molecular data led to a new evolutionary understanding, in which all eukaryotic diversity has been classified into five or six supergroups. Yet, the composition of these large assemblages and their relationships remain controversial. Methodology/Principle Findings. Here, we report the sequencing of expressed sequence tags (ESTs) for two species belonging to the supergroup Rhizaria and present the analysis of a unique dataset combining 29908 amino acid positions and an extensive taxa sampling made of 49 mainly unicellular species representative of all supergroups. Our results show a very robust relationship between Rhizaria and two main clades of the supergroup chromalveolates: stramenopiles and alveolates. We confirm the existence of consistent affinities between assemblages that were thought to belong to different supergroups of eukaryotes, thus not sharing a close evolutionary history. Conclusions. This well supported phylogeny has important consequences for our understanding of the evolutionary history of eukaryotes. In particular, it questions a single red algal origin of the chlorophyll-c containing plastids among the chromalveolates. We propose the abbreviated name ‘SAR’ (Stramenopiles+Alveolates+Rhizaria) to accommodate this new super assemblage of eukaryotes, which comprises the largest diversity of unicellular eukaryotes
Velocity Dispersion of Dissolving OB Associations Affected by External Pressure of Formation Environment
This paper presents a possible way to understand dissolution of OB
associations (or groups). Assuming rapid escape of parental cloud gas from
associations, we show that the shadow of the formation environment for
associations can be partially imprinted on the velocity dispersion at their
dissolution. This conclusion is not surprising as long as associations are
formed in a multiphase interstellar medium, because the external pressure
should suppress expansion caused by the internal motion of the parental clouds.
Our model predicts a few km s as the internal velocity dispersion.
Observationally, the internal velocity dispersion is km s which
is smaller than our prediction. This suggests that the dissipation of internal
energy happens before the formation of OB associations.Comment: 6 pages. AJ accepte
Functional significance may underlie the taxonomic utility of single amino acid substitutions in conserved proteins
We hypothesized that some amino acid substitutions in conserved proteins that are strongly fixed by critical functional roles would show lineage-specific distributions. As an example of an archetypal conserved eukaryotic protein we considered the active site of ß-tubulin. Our analysis identified one amino acid substitution—ß-tubulin F224—which was highly lineage specific. Investigation of ß-tubulin for other phylogenetically restricted amino acids identified several with apparent specificity for well-defined phylogenetic groups. Intriguingly, none showed specificity for “supergroups” other than the unikonts. To understand why, we analysed the ß-tubulin Neighbor-Net and demonstrated a fundamental division between core ß-tubulins (plant-like) and divergent ß-tubulins (animal and fungal). F224 was almost completely restricted to the core ß-tubulins, while divergent ß-tubulins possessed Y224. Thus, our specific example offers insight into the restrictions associated with the co-evolution of ß-tubulin during the radiation of eukaryotes, underlining a fundamental dichotomy between F-type, core ß-tubulins and Y-type, divergent ß-tubulins. More broadly our study provides proof of principle for the taxonomic utility of critical amino acids in the active sites of conserved proteins
- …