4,254 research outputs found

    Neutrinoless Double Beta Decay and Future Neutrino Oscillation Precision Experiments

    Full text link
    We discuss to what extent future precision measurements of neutrino mixing observables will influence the information we can draw from a measurement of (or an improved limit on) neutrinoless double beta decay. Whereas the Delta m^2 corresponding to solar and atmospheric neutrino oscillations are expected to be known with good precision, the parameter theta_{12} will govern large part of the uncertainty. We focus in particular on the possibility of distinguishing the neutrino mass hierarchies and on setting a limit on the neutrino mass. We give the largest allowed values of the neutrino masses which allow to distinguish the normal from the inverted hierarchy. All aspects are discussed as a function of the uncertainty stemming from the involved nuclear matrix elements. The implications of a vanishing, or extremely small, effective mass are also investigated. By giving a large list of possible neutrino mass matrices and their predictions for the observables, we finally explore how a measurement of (or an improved limit on) neutrinoless double beta decay can help to identify the neutrino mass matrix if more precise values of the relevant parameters are known.Comment: 35 pages, 12 figures. Comments and references added. To appear in PR

    Constraining Non-Standard Interactions of the Neutrino with Borexino

    Full text link
    We use the Borexino 153.6 ton.year data to place constraints on non-standard neutrino-electron interactions, taking into account the uncertainty in the 7Be solar neutrino flux, and backgrounds due to 85Kr and 210Bi beta-decay. We find that the bounds are comparable to existing bounds from all other experiments. Further improvement can be expected in Phase II of Borexino due to the reduction in the 85Kr background.Comment: 21 pages, 16 pdf figures, 2 tables. Analysis updated including the uncertainty in sin^2\theta_{23}. Accepted in JHE

    Response of a TeO_2 bolometer to alpha particles

    Full text link
    TeO2TeO_2 crystals are used as bolometers in experiments searching for Double Beta Decay without emission of neutrinos. One of the most important issues in this extremely delicate kind of experiments is the characterization of the background. The knowledge of the response to α\alpha particles in the energy range where the signal is expected is therefore a must. In this paper we report the results on the response function of a TeO2TeO_2 bolometer to α\alpha's emitted by 147^{147}Sm dissolved in the crystal at the growth phase. A Quenching Factor of (1.0076±0.00051.0076\pm 0.0005) is found, independent of the temperature in the investigated range. The energy resolution on α\alpha peaks shows a standard calorimeter energy dependence: σ  [keV]=(0.56±0.02)(0.010±0.002)E[keV]\sigma\; [\rm{keV}] = (0.56 \pm 0.02) \oplus (0.010 \pm 0.002)\sqrt{E[\rm{keV}]} . Signal pulses show no difference between α\alpha and βγ\beta\gamma particle

    A high-fidelity noiseless amplifier for quantum light states

    Full text link
    Noise is the price to pay when trying to clone or amplify arbitrary quantum states. The quantum noise associated to linear phase-insensitive amplifiers can only be avoided by relaxing the requirement of a deterministic operation. Here we present the experimental realization of a probabilistic noiseless linear amplifier that is able to amplify coherent states at the highest level of effective gain and final state fidelity ever reached. Based on a sequence of photon addition and subtraction, and characterized by a significant amplification and low distortions, this high-fidelity amplification scheme may become an essential tool for quantum communications and metrology, by enhancing the discrimination between partially overlapping quantum states or by recovering the information transmitted over lossy channels.Comment: 5 pages, 4 figure

    Search for Solar Axions Produced in the p+d3He+Ap + d \rightarrow\rm{^3He}+ A Reaction

    Full text link
    A search for the axioelectric absorption of 5.5-MeV solar axions produced in the p+d3He+γ(5.5MeV)p+d\rightarrow \rm{^3He}+\gamma(5.5 \rm{MeV}) reaction was performed with two BGO detectors placed inside a low-background setup. A model independent limit on axion-photon and axion-nucleon couplings was obtained: gAe×gAN3.2×109(mA=0)|g_{Ae}\times g_{AN}| \leq 3.2\times 10^{-9} (m_A=0). Constraints on the axion-electron coupling constant were obtained for axions with masses in the (0.11.0)(0.1-1.0) MeV range: gAe(1.89.0)×107g_{Ae}\leq (1.8-9.0)\times 10^{-7}. The solar positron flux from Ae+e+A\rightarrow e^-+e^+ decay was determined for axions with masses mA>2mem_A > 2m_e. Using the existing experimental data on the interplanetary positron flux, a new constraint on the axion-electron coupling constant for axions with masses in the (1.25.4)(1.2-5.4) MeV range was obtained: gAe(15)×1017g_{Ae} \leq (1-5)\times 10^{-17}.Comment: 6 pages, 5 figure

    Preparation and characterisation of isotopically enriched Ta2_2O5_5 targets for nuclear astrophysics studies

    Full text link
    The direct measurement of reaction cross sections at astrophysical energies often requires the use of solid targets of known thickness, isotopic composition, and stoichiometry that are able to withstand high beam currents for extended periods of time. Here, we report on the production and characterisation of isotopically enriched Ta2_2O5_5 targets for the study of proton-induced reactions at the Laboratory for Underground Nuclear Astrophysics facility of the Laboratori Nazionali del Gran Sasso. The targets were prepared by anodisation of tantalum backings in enriched water (up to 66% in 17^{17}O and up to 96% in 18^{18}O). Special care was devoted to minimising the presence of any contaminants that could induce unwanted background reactions with the beam in the energy region of astrophysical interest. Results from target characterisation measurements are reported, and the conclusions for proton capture measurements with these targets are drawn.Comment: accepted to EPJ

    Heavy Quark Symmetry Violation in Semileptonic Decays of D Mesons

    Full text link
    The decays of DD mesons to KlνK l \nu and KlνK^* l \nu final states exhibit significant deviations from the predictions of heavy-quark symmetry, as one might expect since the strange quark's mass is of the same order as the QCD scale. Nonetheless, in order to understand where the most significant effects might lie for heavier systems (such as BDlνB \to D l\nu and BDlνB \to D^* l\nu), the pattern of these deviations is analyzed from the standpoint of perturbative QCD and O(1/ms){\cal O}(1/m_s) corrections. Two main effects are noted. First, the perturbative QCD corrections lead to an overall decrease of predicted rates, which can be understood in terms of production of excited kaonic states. Second, O(1/ms){\cal O}(1/m_s) effects tend to cancel the perturbative QCD corrections in the case of KlνKl\nu decay, while they have minimal effect in KlνK^*l\nu decay.Comment: 25 pages (LaTeX) + 7 pages of Postscript figures (included at end), EFI-92-3

    Electroexcitation of the Δ+(1232)\Delta^{+}(1232) at low momentum transfer

    Get PDF
    We report on new p(e,ep)π(e,e^\prime p)\pi^\circ measurements at the Δ+(1232)\Delta^{+}(1232) resonance at the low momentum transfer region. The mesonic cloud dynamics is predicted to be dominant and rapidly changing in this kinematic region offering a test bed for chiral effective field theory calculations. The new data explore the low Q2Q^2 dependence of the resonant quadrupole amplitudes while extending the measurements of the Coulomb quadrupole amplitude to the lowest momentum transfer ever reached. The results disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations that include pion cloud effects, chiral effective field theory and lattice calculations. The reported measurements suggest that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements

    A note on the pricing of multivariate contingent claims under a transformed-gamma distribution

    Get PDF
    We develop a framework for pricing multivariate European-style contingent claims in a discrete-time economy based on a multivariate transformed-gamma distribution. In our model, each transformed-gamma distributed underlying asset depends on two terms: a idiosyncratic term and a systematic term, where the latter is the same for all underlying assets and has a direct impact on their correlation structure. Given our distributional assumptions and the existence of a representative agent with a standard utility function, we apply equilibrium arguments and provide sufficient conditions for obtaining preference-free contingent claim pricing equations. We illustrate the applicability of our framework by providing examples of preference-free contingent claim pricing models. Multivariate pricing models are of particular interest when payoffs depend on two or more underlying assets, such as crack and crush spread options, options to exchange one asset for another, and options with a stochastic strike price in general
    corecore