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A Note on the Pricing of Multivariate Contingent

Claims under a Transformed-Gamma Distribution

Abstract

We develop a framework for pricing multivariate European-style contin-

gent claims in a discrete-time economy based on a multivariate transformed-

gamma distribution. In our model, each transformed-gamma distributed un-

derlying asset depends on two terms: a idiosyncratic term and a systematic

term, where the latter is the same for all underlying assets and has a direct

impact on their correlation structure. Given our distributional assumptions

and the existence of a representative agent with a standard utility func-

tion, we apply equilibrium arguments and provide sufficient conditions for

obtaining preference-free contingent claim pricing equations. We illustrate

the applicability of our framework by providing examples of preference-free

contingent claim pricing models. Multivariate pricing models are of particu-

lar interest when payoffs depend on two or more underlying assets, such as

crack and crush spread options, options to exchange one asset for another,

and options with a stochastic strike price in general.

Keywords: Multivariate Transformed-Gamma Distribution, Risk Neu-

tral Valuation Relationship, Multivariate Contingent Claim, Stochastic Strike

Price, General Equilibrium.

JEL classification: G13.
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A Note on the Pricing of Multivariate Contingent

Claims under a Transformed-Gamma Distribution

1 Introduction

Derivative markets provide investors with a variety of different types of in-

struments for managing the risk of their portfolios. One type of derivative

is related to contingent claims whose payoffs depend on more than one un-

derlying asset, such as options to exchange one asset for another, options on

mutual funds, crack and crush spread options, and options with a stochastic

strike price in general. This paper focus on the pricing of such derivatives.

Most of the previous studies on the pricing of multivariate contingent

claims rely, in some way or another, on the assumption of normally or

transformed-normally distributed prices or cash flows i.e. they are exten-

sions of the Black and Scholes (1973) and Brennan (1979) models. Examples

include, amongst others, Camara (2005), Johnson (1987), Margrabe (1978),

Stapleton and Subrahmanyam (1984), and Stulz (1982). In this paper we

depart from the well known Gaussian framework by letting the underlying

assets have a multivariate transformed-gamma distribution. That is, we de-

velop a framework for pricing multivariate European-style contingent claims

in a discrete-time economy based on a multivariate transformed-gamma dis-

tribution.

In our framework, each transformed-gamma distributed underlying asset

depends on two gamma-distributed terms, where one can be regarded as
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systematic and the other as idiosyncratic. While the idiosyncratic terms of

the underlying assets are, of course, independent of each other, the systematic

term is the same for all underlying assets and has a direct impact on their

correlation structure. Also, the distributions of the underlying assets do not

need to be the same, but must belong to the family of transformed-gamma

distributions.

Given the distributional assumptions and the existence of a representative

agent with a standard utility function, we show explicitly the link between

the primitives of the economy and the underlying assets. We also show

that, in certain cases, it is possible to obtain preference-free contingent claim

pricing equations by using equilibrium arguments alone without having to

rely on the assumption of risk neutrality. We illustrate the applicability

of our framework by presenting examples of preference-free option pricing

models that depend on one or more underlying assets.

Applications of the gamma distribution1 to finance include the variance-

gamma process of Madan and Seneta (1990) and the respective variance-

gamma option pricing model of Madan, Carr and Chang (1998), the gamma

option pricing models of Gerber and Shiu (1994), Heston (1993) and Schroder

(2004), the univariate transformed-gamma option pricing model of Vitiello

and Poon (2010), the Markovian gamma model of Leobacher and Ngare

(2011), and the bilateral gamma model of Bellini and Mercuri (2014) amongst

others. In addition to this, the gamma distribution has been applied, for in-

1The gamma distribution contains the normal distribution as a limiting case and,

as the lognormal distribution, it lies on a single line in the skewness-kurtosis plane (see

Johnson et al. 1994).
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stance, to income distribution by Salem and Mount (1974), to insurance

derivatives by Lane and Movchan (1999), and more widely to model natural

events, in particular rainfall (Griffiths, 1990; Simpson, 1972), which suggests

that pricing models based on the gamma distribution may be a good alter-

native to price such natural events.

The rest of this article is organised as follows: in Section 2 the basic

economy and the multivariate transformed-gamma distribution are intro-

duced, and the asset specific pricing kernel is obtained. In Section 3 an

equilibrium relationship for the price of the underlying assets is obtained

and new preference-free multivariate transformed-gamma contingent claim

pricing models are derived. Section 4 concludes.

2 The Valuation Model

2.1 The Economy

The basic setting introduced in this section is similar to the economy devel-

oped by Camara (2005) and Stapleton and Subrahmanyam (1984), in which

there is a representative investor who maximises her expected utility of termi-

nal wealth , MaxE [U ], where U is the investor’s utility function of wealth

and E [·] is the expectation taken with respect to the physical probability

measure.

In equilibrium, it follows from the first order condition that the vector of
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current forward prices of payoffs V (X) is given by

P (V (X)) =
E [V (X)UW ]

E [UW ]

= E [V (X)φ (X)] , (1)

where UW is the first derivative of the utility function with respect to wealth,

V (X) is the vector of payoffs of the claims V (·) as a function of the payoff

of underlying assets X = (x1, . . . , xM−1), and

φ (X) =
E [UW |X]

E [UW ]
(2)

is defined as the asset-specific pricing kernel.

It follows that the forward value of the underlying assets can also be

obtained from equation (1). For instance, if V (X) = X then P (X) =

E [Xφ (X)] ,and P (X) is the vector of forward values of the underlying assets

X.

2.2 Distributional Assumptions

There are several ways of constructing multivariate distributions. An overview

is provided by Kotz et al. (2000). Here, we apply the Mathai and Moschopou-

los (1991) multivariate gamma distribution which, amongst other features,

guarantees gamma distributed marginal densities. The gamma and the mul-

tivariate gamma distributions are introduced in the following definitions.

Definition 2.1 (The gamma distribution) The random variable y is said

to be gamma distributed, y ∼ G (p, σ, µ), when its three-parameter density

function is given by

f (y; p, σ, µ) =
(y − µ)p−1

σpΓ (p)
exp

[
−
(
y − µ
σ

)]
, µ < y <∞, (3)
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where p > 0 is the shape parameter, σ > 0 is the scale parameter, µ is the

location parameter and Γ (·) is the gamma function.

Definition 2.2 (The multivariate gamma distribution) Let yi ∼ G (pi, σi, µi),

for i = 0, . . . ,M , be mutually independent, and

zi =
σi
σ0
y0 + yi, i = 1, . . . ,M, (4)

then the vector Z = (z1, . . . , zM ) is said to have a multivariate gamma

distribution. Thus, zi ∼ G (p0 + pi, σi, µi + µ0σi/σ0) as in Definition 2.1.

Given Definition 2.2, one can think of yi as an idiosyncratic term and y0

as a systematic term (a disturbance on yi), leading to correlated z′is. Note

that according to this definition the y′s are mutually independent but the

z′s are positively correlated with Cov (zi, zj) = p0σiσj, i 6= j.

The joint density of z1, . . . , zM is given by

f (z1, . . . , zM) =

ˆ
y0

M∏
i=1

(y0 − µ0)
p0−1

Γ (p0) Γ (pi)σ
p0
0 σ

pi
i

(zi − y0σi/σ0 − µi)pi−1

exp (− (y0 − µ0) /σ0 − (zi − y0σi/σ0 − µi) /σi) dy, (5)

which can be obtained by using definitions 2.1 and 2.2, and integrating with

respect to y0.

2.3 The Asset Specific Pricing Kernel

In this subsection we obtain a functional form of the asset-specific pricing

kernel introduced in equation (2). We present below two definitions, one

which introduces the distribution of terminal wealth and of the underlying
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assets’ payoff, and a second definition which introduces investors’ marginal

utility function of wealth.

Definition 2.3 (The distribution of wealth and of the underlying assets)

Terminal wealth and the payoff of the underlying assets have a multivariate

transformed gamma distribution given respectively by

hM (W ) = hM (zM) =
σM
σ0
y0 + yM , (6)

hi (xi) = hi (zi) =
σi
σ0
y0 + yi, i = 1, . . . ,M − 1, (7)

where hi (·), for i = 1, . . . ,M is a monotonic differentiable function, and y0

and yi have a three parameter gamma distribution as in Definition 2.1.

In the definition above the functions h1 (x1) , . . . , hM (W ) do not need

to be the same. For instance, if hi (xi) = xi then the gamma distribution

obtains. If h (xi) = ln x1 we obtain the log-gamma distribution used by

Heston (1993), and if hi (xi) = σi exp [(xi − µi − µ0σi/σ0) /σi] +µi +µ0σi/σ0

and p0 + pi = 1 we obtain the Gumbel distribution.

Considering definitions 2.2 and 2.3, the joint density of x1, . . . , xM is given

by

f (x1, . . . , xM) =

ˆ
y0

M∏
i=1

(y0 − µ0)
p0−1 |h′i (xi)|

Γ (p0) Γ (pi)σ
p0
0 σ

pi
i

(
hi (xi)−

σi
σ0
y0 − µi

)pi−1
exp

(
− (y0 − µ0) /σ0 −

(
hi (xi)−

σi
σ0
y0 − µi

)
/σi

)
dy. (8)

Definition 2.4 (The marginal utility function) The representative investor

has a marginal utility function of wealth given by UW = exp [γhM (W )], where

the constant γ is a preference parameter.
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The transformed function hM (W ) matches the terminal distribution of

wealth with the marginal utility function of wealth. For instance, if hM (W ) =

lnW , investors have a marginal power utility function and present Constant

Relative Risk Aversion (CRRA); if hM (W ) = W , then investors present a

marginal exponential utility function with Constant Absolute Risk Aversion

(CARA).

The previous three definitions lead to Proposition 2.5 below, where the

functional form of the asset-specific pricing kernel is formally introduced.

Proposition 2.5 (The asset specific pricing kernel) Given definitions 2.2,

2.3 and 2.4, the asset-specific pricing kernel is given by

φ (X) =
(1− γσM)p0

f (x1, . . . , xM−1)

ˆ
y0

ey
∗
0(γσM−1)

(y∗0)p0−1

Γ (p0)
M−1∏
i=1

|h′i (xi)|
Γ (pi)σ

pi
i

(hi (xi)− σiy∗0 − µ∗i )
pi−1

exp [− (h (xi)− σiy∗0 − µ∗i ) /σi] dy0, (9)

where X = (x1, . . . , xM−1) , y
∗
0 = (y0 − µ0) /σ0, µ∗i = µi + µ0σi/σ0, and

f (x1, . . . , xM−1) is given by equation (8).

Proof. See Appendix.

This result is used in the next section to price the underlying assets

x1, x2, . . . , xM−1, and the respective contingent claims written on them.

3 Prices in Equilibrium

The pricing equation in (1) can be used to price any specific asset in X.

Thus, considering equation (5), the equilibrium relationship for the forward
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price of the underlying assets, where V (xi) = xi, can be written as

P (xi) = E [xiφ (X)]

=

ˆ
x1

· · ·
ˆ
xM−1

xiφ (X) f (x1, . . . , xM−1) dx1 . . . dxM−1, (10)

where the density f (x1, x2, . . . , xM−1) is given by equation (8).

Similarly, the current forward price of any contingent claim with a payoff

V (X) is given by

P (V (X)) = E [V (X)φ (X)]

=

ˆ
x1

· · ·
ˆ
xM−1

V (x1, . . . , xM−1)

φ (X) f (x1, . . . , xM−1) dx1 . . . dxM−1. (11)

If equation (10) has a solution then it may be possible to solve for the pref-

erence parameters and substitute the resulting expression into equation (11),

which makes possible to eliminate preference parameters from the option

pricing equation. Thus, by replacing the preference parameter by a certain

function of the current forward price of the underlying assets, P (X), it is

possible to achieve risk neutrality, such that P (V (X)) = E [V (X)φ (X)] =

EQ [V (X)], where EQ means that the expectation is taken with respect to

the risk-neutral density. This result can be used to obtain preference free

European-style contingent claim equations. A few examples are provided

below.2

Example 3.1 (The gamma vanilla call option) We are interested in a call

option written on the payoff of a single log-gamma distributed underlying

2The equations presented in the examples can be solved numerically. For a survey of

numerical methods for solving this type of equation see Carmona and Durrleman (2003).
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asset V (x) = x1, where h1 (x1) = x1. The equilibrium forward price of

x1 can be obtained by using equation (10) for i = 1, Definition 2.3, and

Proposition 2.5 as follows,

P (x1) = E [x1φ (x1)] =

ˆ
x1

x1φ (x1) f (x1) dx

= µ∗1 + σ1p1 +
σ1p0

1− γσM
, (12)

where f (x1) comes from equation (5).

In this case it is possible to use the forward equilibrium relationship above

to solve for the preference parameter γ, which yields

γ =

(
1− σ1p0

P (x1)− σ1p1 − µ∗1

)
1

σM
. (13)

As discussed above, equation (13) shows that the preference parameter can

be expressed as a function of the price of the underlying assets. This allows

us to obtain the forward price of contingent claims in a preference free form

such that P (V (x1)) = EQ [V (x1)]. For instance, for a call option with

payoff V (x1) = Max (x1 −K, 0) and strike price K its forward price can be

obtained by the following specific form of equation (11)

P (V (x1)) = E [V (x1)φ (x1)]

=

ˆ
x1

Max (x1 −K, 0)φ (x1) f (x1) dx1, (14)

where f (x1) is given by equation (5). Finally, by replacing the preference

parameter γ in the equation above by the relationship given in equation (13),

one obtains a preference free option pricing formula.

Example 3.2 (The option to exchange an underlying asset for another: the

gamma-χ2 call option) The value of an option to exchange one underlying
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asset for another based on the Black and Scholes (1973) equation was first

proposed by Margrabe (1978). Here we present a solution for the price of a

call option to exchange a gamma distributed variable x1 for a χ2 distributed

variable x2 with payoff function given by V (x1, x2) = Max (x1 − x2 −K, 0).

We let h1 (x1) = x1 and h2 (x2) = [(x2 − µ∗2) /2 + µ∗2] with p0 + p2 = p.

The results obtained in the previous example can be used for x1. The

equilibrium price of x2 can be obtained through the application of equation

(10), which yields

P (x2) = 2σ2

(p
2
− p0

)
+

2σ2p0
(1− γσM)

+ µ∗2. (15)

As before, solving for the preference parameter leads to the following re-

lationship

γ =
1

σM

[
1− 2σ2p0

P (x2)− 2σ2
(
p
2
− p0

)
− µ∗2

]
, (16)

which, in equilibrium, must be equal to equation (13).

The current forward price of a contingent claim with payoff V (x1, x2) can

be obtained by using equation (11), yielding

P (V (x1, x2)) = E [V (x1, x2)φ (x1, x2)]

=

ˆ
x2

ˆ
x1

Max (x1 − x2 −K, 0)φ (x1, x2) f (x1, x2) dx1dx2.

(17)

In order to solve the above equation, we use conditional expectations such
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that

P (V (x1, x2)) = E [V (x1, x2)φ (x1, x2)]

= E [E [V (x1, x2)φ (x1, x2) |x2]]

=

ˆ
x2

E [V (x1, x2)φ (x1, x2) |x2] f2 (x2) dx2, (18)

where f2 (x2) and φ (x1, x2) are given by equations (8) and (9) respectively,

and the conditional expectation is f (x1|x2) = f (x1, x2) /f (x2). Replacing

the preference parameters in equation (18) by equations (13) and (16), results

in a preference-free option pricing formula.

The examples above prove the following proposition.

Proposition 3.3 (Sufficient condition for preference free option pricing for-

mulae) If the payoff of the underlying assets have a distribution according to

Definition 2.3, the preference parameter in equation (10) can be written as

a function of the underlying variables and distributional parameters, and the

asset specific pricing kernel in Proposition 2.5 holds then a risk neutral val-

uation relationship exists.

4 Conclusion

In this paper we develop a framework for the pricing of multivariate contin-

gent claims based on a transformed multivariate gamma distribution, extend-

ing the work of Camara (2005) and Stapleton and Subrahmanyam (1984) to

a non-Gaussian setting. The resulting contingent claim pricing equations are
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free of preference parameters.3

The gamma distribution has been widely applied to model natural events,

rainfall in particular. The framework developed here could help the pricing

of contingent claims on such situations, for instance.4 Also, it could also

be useful for pricing multivariate commodity options, as it can capture the

increasing implied volatility pattern of such assets (see Vitiello and Poon,

2010; Zhou, 1998). Thus one could price an option written several agricul-

tural commodities, such as crush spread options.

3The applicability of equations obtained here depends on the estimation of the rele-

vant parameters. Depending on the information available, the method of moments can

applied or the methodology suggested by Mathai and Moschopoulos (1991) for instance.

Alternatively one can use the parameters implied by option market prices (see for instance

Mayhew, 1995; Poon and Granger, 2003).
4It is important to note that in an incomplete market setting, such as the one related

to flooding, the asset specific pricing kernel in equation (9) may not be unique.
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Appendix

Proof. (Proposition 2.5) In order to obtain a functional form for the as-

set specific pricing kernel in equation (2) definitions 2.2, 2.3 and 2.4, and

equation (5) are required.

The numerator in equation (2), E [UW |X], can be obtained directly from

the definition of the conditional distribution, f (W |X) = f (x1, . . . , xM)÷

(x1, . . . , xM−1), which yields

E [UW |X] = E [exp (γhM (W )) |x1, . . . , xM−1]

=
1

f (x1, . . . , xM−1)

ˆ
y0

eγµ
∗
M (y∗0)p0−1 ey

∗
0(γσM−1)

Γ (p0) (1− γσM)pM

M−1∏
i=1

|h′i (xi)|
Γ (pi)σ

pi
i

(hi (xi)− σiy∗0 − µ∗i )
pi−1

exp [− (hi (xi)− σiy∗0 − µ∗i ) /σi] dy0, (A.1)

where f (x1, . . . , xM−1) is given by equation (8), y∗0 = (y0 − µ0) /σ0, and

µ∗i = µi + µ0σi/σ0 for i = 1, . . . ,M .

The denominator in equation (2) can be obtained by solving the expec-

tation E [UW ], with xM ∼ G (p0 + pM , σM , µM + µ0σM/σ0), which yields

E [UW ] = E [exp (γhM (W ))] =
exp (γµ∗M)

(1− γσM)pM+p0
. (A.2)

Finally, substituting equations (A.2) and (A.1) into equation (2) yields

equation (9).

15



References

[1] Bellini, F., & Mercuri, L. (2014). Option pricing in a conditional bilateral

gamma model. Central European Journal of Operations Research, 22,

373-390.

[2] Black, F., & Scholes, M. (1973). The pricing of options and corporate

liabilities. Journal of Political Economy, 81, 637–654.

[3] Brennan, M. (1979). The pricing of contingent claims in discrete time

models. Journal of Finance, 34, 53–68.

[4] Camara, A. (2005). Option prices sustained by risk-preferences. Journal

of Business, 78, 1683–1708.

[5] Carmona, R. & Durrleman, V. (2003) Pricing and hedging spread op-

tions, Siam Review, 45, 627-685

[6] Gerber, H., & Shiu, E. (1994). Option pricing by Esscher transforms.

Transactions of Society of Actuaries, 46, 99–140.

[7] Griffiths, G. (1990). Rainfall deficits: distribution of monthly runs. Jour-

nal of Hydrology, 115, 219–229.

[8] Heston, S. (1993). Invisible parameters in option prices. Journal of Fi-

nance, 48, 933–947.

[9] Johnson, H. (1987). Options on the maximum of the minimum of several

assets. Journal of Financial and Quantitative Analysis, 22, 277–283.

16



[10] Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous uni-

variate distributions (Vol. 1), Wiley.

[11] Kotz, S., Balakrishnan, N., & Johnson, N. L. (2000). Continuous multi-

variate distributions (Vol. 1), Wiley.

[12] Lane, M., & Movchan, O. (1999). The perfume of a premium II. Deriva-

tives Quarterly, 5, 27-40.

[13] Leobacher, G. & Ngare, P. (2011) On modelling and pricing rainfall

derivatives with seasonality, Applied Mathematical Finance, 18, 71-91.

[14] Madan, D. B., & Seneta, E. (1990). The variance gamma (V.G.) model

for share market returns. Journal of Business, 63, 511–524.

[15] Madan, D. B., Carr, P., & Chang, E. (1998). The variance gamma pro-

cess and option pricing. European Finance Review, 2, 79–105.

[16] Margrabe, W. (1978). The value of an option to exchange one asset for

another. Journal of Finance, 33, 177–186.

[17] Mathai, A. M., & Moschopoulos, P. G. (1991). On a multivariate gamma.

Journal of Multivariate Analysis, 39, 135–153.

[18] Mayhew, S. (1995). Implied volatility. Financial Analysts Journal, Jul-

Aug, 8–20.

[19] Poon, S., & Granger, C. (2003). Forecasting volatility in financial mar-

kets: a review. Journal of Economic Literature, 41, 478–539.

17



[20] Salem, A. B., & Mount., T. D. (2005). A convenient descriptive model

for income distribution: the gamma density. Econometrica, 42, 1115–

1128.

[21] Schroder, M. (2004). Risk-neutral parameters shifts and derivatives pric-

ing in discrete time. Journal of Finance, 59, 2375–2401.

[22] Simpson, J. (1972). Use of gamma distribution in single-cloud rainfall

analysis. Monthly Weather Review, 100, 309–312.

[23] Stapleton, R. C., & Subrahmanyam, M. G. (1984). The valuation of mul-

tivariate contingent claims in discrete time models. Journal of Finance,

39, 207–228.

[24] Stulz, R. (1982). Options on the minimum or the maximum of two risky

assets: analysis and applications. Journal of Financial Economics, 10,

161–185.

[25] Vitiello, L., & Poon, S. (2010). General equilibrium and preference free

model for pricing options under transformed Gamma. Journal of Futures

Markets, 30, 409–431.

[26] Zhou, Z. (1998). An equilibrium analysis of hedging with liquidity con-

straints, speculation, and government price subsidy in a commodity mar-

ket. Journal of Finance, 53, 1705–1736.

18




