313 research outputs found

    Monitoring Time Intervals

    Get PDF
    Run-time checking of timed properties requires to monitor events occurring within a specified time interval. In a distributed setting, working with intervals is complicated due to uncertainties about network delays and clock synchronization. Determining that an interval can be closed - i.e., that all events occurring within the interval have been observed - cannot be done without a delay. In this paper, we consider how an appropriate delay can be determined based on parameters of a monitoring setup, such as network delay, clock skew and clock rate. We then propose a generic scheme for monitoring time intervals, parameterized by the detection delay, and discuss the use of this monitoring scheme to check different timed specifications, including real-time temporal logics and rate calculations

    Lapex: A Phoswich balloon experiment for hard X-ray astronomy

    Get PDF
    Satellite and balloon observations have shown that several classes of celestial objects are hard ( 15 keV) energy band with a sensitivity of approx 10 mCrab has been performed with the UCSD/MIT instrument (A4) on board the HEAO 1 satellite. About 70 X-ray sources were detected, including galactic and extragalactic objects. Hard X-ray emission has been detected in the Galaxy from X-ray pulsars. Extragalactic sources of hard X-ray emission include clusters of galaxies, QSOs, BL Lac objects, Seyfert galaxies. The essential characteristics of the Large Area Phoswich Experiment (LAPEX) for crowded sky field observations are described. It has: (1) a broad energy band of operation (20-300 keV); (2) a 3 sigma sensitivity of about 1 mCrab in 10,000 s of live observing time; and (3) imaging capabilities with an angular resolution of about 20'

    Proof Theory, Transformations, and Logic Programming for Debugging Security Protocols

    Get PDF
    We define a sequent calculus to formally specify, simulate, debug and verify security protocols. In our sequents we distinguish between the current knowledge of principals and the current global state of the session. Hereby, we can describe the operational semantics of principals and of an intruder in a simple and modular way. Furthermore, using proof theoretic tools like the analysis of permutability of rules, we are able to find efficient proof strategies that we prove complete for special classes of security protocols including Needham-Schroeder. Based on the results of this preliminary analysis, we have implemented a Prolog meta-interpreter which allows for rapid prototyping and for checking safety properties of security protocols, and we have applied it for finding error traces and proving correctness of practical examples

    Robust H-infinity filtering for 2-D systems with intermittent measurements

    Get PDF
    This paper is concerned with the problem of robust H∞ filtering for uncertain two-dimensional (2-D) systems with intermittent measurements. The parameter uncertainty is assumed to be of polytopic type, and the measurements transmission is assumed to be imperfect, which is modeled by a stochastic variable satisfying the Bernoulli random binary distribution. Our attention is focused on the design of an H∞ filter such that the filtering error system is stochastically stable and preserves a guaranteed H∞ performance. This problem is solved in the parameter-dependent framework, which is much less conservative than the quadratic approach. By introducing some slack matrix variables, the coupling between the positive definite matrices and the system matrices is eliminated, which greatly facilitates the filter design procedure. The corresponding results are established in terms of linear matrix inequalities, which can be easily tested by using standard numerical software. An example is provided to show the effectiveness of the proposed approac

    Noether's Symmetry Theorem for Variational and Optimal Control Problems with Time Delay

    Get PDF
    We extend the DuBois-Reymond necessary optimality condition and Noether's symmetry theorem to the time delay variational setting. Both Lagrangian and Hamiltonian versions of Noether's theorem are proved, covering problems of the calculus of variations and optimal control with delays.Comment: This is a preprint of a paper whose final and definite form will appear in the international journal Numerical Algebra, Control and Optimization (NACO). Paper accepted for publication 15-March-201

    A Declarative Framework for Specifying and Enforcing Purpose-aware Policies

    Full text link
    Purpose is crucial for privacy protection as it makes users confident that their personal data are processed as intended. Available proposals for the specification and enforcement of purpose-aware policies are unsatisfactory for their ambiguous semantics of purposes and/or lack of support to the run-time enforcement of policies. In this paper, we propose a declarative framework based on a first-order temporal logic that allows us to give a precise semantics to purpose-aware policies and to reuse algorithms for the design of a run-time monitor enforcing purpose-aware policies. We also show the complexity of the generation and use of the monitor which, to the best of our knowledge, is the first such a result in literature on purpose-aware policies.Comment: Extended version of the paper accepted at the 11th International Workshop on Security and Trust Management (STM 2015

    Model-Based Security Testing

    Full text link
    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST) is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Quantitative evaluation of enforcement strategies

    Get PDF
    In Security, monitors and enforcement mechanisms run in parallel with programs to check, and modify their run-time behaviour, respectively, in order to guarantee the satisfaction of a security policy. For the same pol- icy, several enforcement strategies are possible. We provide a framework for quantitative monitoring and enforcement. Enforcement strategies are analysed according to user-dened parameters. This is done by extending the notion controller processes, that mimics the well-known edit automata, with weights on transitions, valued in a C-semiring. C-semirings permit one to be exible and general in the quantitative criteria. Furthermore, we provide some examples of orders on controllers that are evaluated under incomparable criteria
    corecore