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Abstract. Run-time checking of timed properties requires to monitor
events occurring within a specified time interval. In a distributed setting,
working with intervals is complicated due to uncertainties about network
delays and clock synchronization. Determining that an interval can be
closed — i.e., that all events occurring within the interval have been ob-
served — cannot be done without a delay. In this paper, we consider how
an appropriate delay can be determined based on parameters of a moni-
toring setup, such as network delay, clock skew and clock rate. We then
propose a generic scheme for monitoring time intervals, parameterized
by the detection delay, and discuss the use of this monitoring scheme to
check different timed specifications, including real-time temporal logics
and rate calculations.

Keywords: Runtime verification, Time interval monitoring, Real-time
properties

1 Introduction

In this paper, we consider runtime verification of timing properties, such as
one event occurring after another event within certain time bound or counting
the number of events that occur during an interval of time. In both cases, a
monitor needs to not only evaluate the logic of the property but also determine
whether events fall within a given time interval. We consider the situation when
the system being monitored (referred to as the target system or just system,
when the context is clear) and the monitor are deployed in an asynchronous
environment. On the one hand, the asynchronous approach makes monitoring
more difficult, due to uncertain delays introduced by the network delivering
events from the system to the monitor and also due to the differences between
the system and monitor clocks. On the other hand, by using the monitor clock
that is different from the system clock, we may be able to detect that timing
behavior of the target system is incorrect because the system clock is wrong.
We propose a monitor architecture that clearly separates monitoring of time
intervals from the rest of property checking. The property is checked in an event-
driven fashion similar to common approaches to runtime verification. To enable
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checking of the timing in this way, we extend the set of events with a new kind
of event that represents the end of a time interval, which we call interval closure.
Now, we can reduce time checking to temporal ordering: if a system event arrives
before the closure event, it occurred within the time interval, while if the closure
event arrives first, the system event is outside of the interval. In order to produce
closure events in the right order, we introduce the interval handler module into
the monitor.

The second aspect addressed in the paper is the design of the interval handler.
We note two particular design considerations for the handler: one is correctness
and the other is timeliness. On the one hand, the handler needs to correctly
monitor intervals, in the sense that it should close an interval — that is, raise
the closure event — only after any event occurring within the interval has been
received. In the presence of uncertainty, correct monitoring is possible only if
the handler waits long enough to make sure it has seen all relevant events. On
the other hand, closing the interval too late may increase unnecessary resource
consumption for monitoring, which should be avoided. Moreover, we should know
what the tight one is, in order to be certain that the deadline set is larger than
the tight one. It is therefore important to set the monitoring deadline as small
as possible under the premise that correctness of the closure is guaranteed.

To summarize, this paper addresses the following problem: “Given an asyn-
chronous environment with uncertain communication delay and imperfect clock
synchronization between target system and monitor, under what conditions can
correctness of monitoring time intervals be ensured and how to achieve it?”

In this paper, we consider three parameters of monitoring setup, network
delay, clock skew and clock rate, and study how they influence monitoring time
intervals. We explore the parameter space and present a scheme for setting the
deadline of monitoring for each interval. We then introduce an algorithm that
the interval handler uses to monitor intervals.

Related Works. In [1], Sammapun considered properties represented with
time-bound operators and analyzed several different implementations of checking
properties based on timer and heartbeats with bounded or unbounded network
delay. However, clock rate and clock skew were not taken into consideration.
Moreover, properties using aggregate operators were not studied. In [2], Lee and
Davidson proposed algorithms for implementing timed synchronous communica-
tion among processes having different clocks such that all processes will decide
whether the communication is successfull within their own absolute deadlines
and they agree on the same decision. Two communication schemes, multiple
senders with one receiver and N-way communication were analyzed. In [3], they
further analyzed the performance of two algorithms of timed synchronous com-
munication using probabilistic models. We do not consider synchronous commu-
nication in this paper so the method of setting the deadline is different. In [4],
Pinisetty et al. proposed a paradigm of runtime enforcement using time retar-
dants on events to ensure that a system satisfies timed properties. While we are
not aiming at an enforcement scenario, we will rely on a similar technique in
the case when events may be delivered from the system to the monitor out of



order. Jahanian et al. studied the runtime monitoring of time constraints speci-
fied by Real-Time Logic (RTL) in the distributed real-time system [5]. However,
the monitoring procedure of time intervals was not discussed. Finkbeiner et al.
presented a query language for asynchronously collecting statistic information
and proposed algebraic alternating automata for evaluating the queries in [6].
Colombo et al. presented the tool LarvaStat [7], which supports statistic op-
erations based on the incrementally computable statistics. It also supports the
specification of intervals opened and closed by special events. However, the is-
sue of monitoring intervals was not discussed in detail. Basin et al. extended
MFOTL (metric first-order temporal logic) with SQL-like aggregate operators
over time and corresponding monitoring algorithms [8]. In [9], they further raised
the problem of imprecise timestamps of traces influencing the correct verification
of the properties specified by MTL formulas. The paper gave the conclusion that
certain MTL fragments can be verified by existing monitors for precise traces
over traces with imprecise timestamps. In our work, we do not verify properties
using a specific logic but rather focus on studying the issue of monitoring inter-
vals. To summarize, little work has been done in monitoring time intervals in a
distributed environment based on the analysis of parameters of the monitoring
setup.

Paper organization. The paper is organized as follows. Section 2 provides
motivation for the work and gives examples of timed property specifications that
can be checked in the proposed fashion. Based on this motivation, we introduce
the monitor architecture in Section 3 and lay out requirements for the interval
handler. We then introduce the system model and definitions of parameters
considered: network delay, clock skew and clock rate. Based on these, Section 4
presents the exploration of the parameter space and addresses the problem of
setting deadline for monitoring time intervals. Section 5 proposes a procedure
for monitoring intervals. Section 6 gives a further discussion on cases when the
correctness of interval monitoring cannot be guaranteed and introduces future
work.

2 Motivation

Several kinds of commonly used timed specifications involve reasoning over time
intervals. We note that, while the logic of evaluating these properties over a
stream of events is different, it invariably involves reasoning about intervals of
time given in the specification and whether the timestamp of a given observation
falls within an interval or outside of it. As we discuss below, parameters of the
monitoring setup, such as clock skew or the latency of delivering observations
to the monitor, have an impact on how this reasoning should be performed. We
therefore want to separate the logic of property evaluation, which depends only
on the semantics of the specification language, and interval management, which
depends on properties of the monitoring setup.

To illustrate our approach, we first briefly revisit two of them: LTL with
interval operators and interval statistics.



LTL with time-bound operators. In LTL, operator Until(U), Weak-
until(W) and R(Release) are used to specify properties in a trace. For instance,
property ¢1U ¢, is satisfied in a trace if ¢ is satisfied at each location of the
trace until ¢o is satisfied at a certain point. The verdict can not be given to
this property until getting the result from the verification of ¢5. To restrict the
time of getting the result, the time-bound operator is utilized [1]. If we want
to express the property that ¢o becomes satisfied within 5 time unit from ¢,
becoming true, the formula is written as ¢1Ujg 5102-
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Fig. 1. Evaluation of interval operators

In many runtime verification approaches [10-12], temporal operators are eval-
uated in an event-driven fashion. Arriving events, which could be observations
from the target system or results of sub formula evaluation, trigger changes in
the operator evaluation status. We want to extend the same approach to inter-
val operators. Consider, for example, evaluation of the bounded-until aUyg b,
where a and b are target system observations. As Fig. 1, a) shows, evaluation
of the operator is a state machine that takes as inputs events a, b, and ¢. Event
not a represents the absence of a. We refer to the event ¢ as the interval closure,
which denotes that ¢; time units have elapsed. Note that ¢; is measured in the
sense of perfect clock, which may be different from the clock on the system and
the monitor side due to the clock skew. Evaluation is activated by an arrival
of a, and while further occurrences of a arrive, the state of the evaluation is
unresolved. As soon as not a arrives, or if the interval is closed, the operator
evaluates to false, denoted by raising an event f. But if b arrives before the
interval is closed, the operator evaluates to true and an event ¢ is raised. In this
way, evaluation of the operator does not depend on the value of the time bound
and does not need direct access to the clock. It is straightforward to extend this
scheme to cover intervals of the form [tq,¢s], as well as cover other commonly
used temporal operators. Note that to monitor aUp, ;,)b we consider intervals
[0,¢1) and [t1,t2]. When b arrives, we determine, which of the two interval it falls
into, or if it is outside of both. For technical reasons that will be discussed later,
we open both intervals when a arrives.

Interval statistics. Some properties needs to collect statistics over a time
interval. These properties can be represented in a similar way as SQL queries
using aggregate operators [8]. For instance, Sumjq ,j(occur(e)) >= b) specifies



the property of the number of occurrences of event e over the time interval [0,¢1]
is equal or greater than b. Fig. 1,b) shows the evaluation scheme for this operator
in a fashion similar to the previous case. Variable count increases with arrivals
of event e. When interval closure event c arrives, the interval is closed. An event
t is raised if count is greater or equal than b; otherwise an event f is raised.

In contrast to interval operators discussed above, calculation of interval
statistics is different in the sense that intervals are recurrent. On the system
side, once an interval ends, the next one is immediately started and statistics
calculation continues for the next interval, effectively partitioning the time line
into intervals of the same size, starting from some initial event. We can view
recurrent intervals as an extension of the two-interval case above.

Checking example. Fig. 2 shows a concrete scenario for monitoring of
aUg, 1,)b when system events can be delivered with a delay. Assume first that
the clocks in both the system and the monitor are perfect. On the monitor side,
we begin processing when the event a arrives at relative time 0. To correctly
evaluate this property, the monitor needs to tell whether b falls within 41 = [0, ¢1)
or within iy = [¢1,t2]. Suppose an event b is raised before ¢; but is delayed more
than a was and thus arrives after the time ¢; on the monitor side. Thus, at t; the
monitor cannot yet conclude that i; has expired. From the monitor perspective,
11 and 4o overlap; that is, an incoming event may belong to either interval.
However, once we see the timestamp of b, we can tell whether it belongs to i; or
1. Therefore, we do not need to measure duration of i; or i3 on the monitor side.
Now consider the case when b does not arrive within 7. In order to conclude
that b did not arrive in time, the monitor has to wait. Eventually, another event
with a large enough timestamp may arrive and the monitor may be able to make
the conclusion based on that. But what if it arrives after a very long time or,
worse, if the missing b was meant to be the last observation? To proceed in a
more timely fashion, the monitor has to use a timer. This timer, essentially, sets
the deadline for b to arrive. This observation underlies our monitoring approach:
we use the timer only to safely close the interval, while all other conclusions —
whether the interval has started and whether an event is within the interval —
are made based on event timestamps.

Apart from the network delay, the clock rate of the system and the monitor
also influence interval monitoring. Using the same example above, assume first
that there is no clock skew and delivery delay is ranged from 0 to 1 in the sense
of the perfect clock. Suppose the clock rate of the perfect clock r, is 1, clock rate
of the system ry is 0.5 and clock rate of the monitor r,, is within range [0.8,1.5].
Interval i1 to be monitored is [0, 6] measured by the perfect clock and the monitor
begins monitoring it at time 0. To guarantee that all events occurring in i, arrive
before the monitor finishes monitoring this interval, the deadline of monitoring
is set at time 10.5 of the monitor clock, as in the worst case, an event occurs at
3 of system clock (corresponding to time 6 in the sense of the perfect clock as
the clock rate is 0.5) arrives at time 10.5 of the monitor clock with the largest
delay. If the actual rate of r,, is 1.5, when an event b happens at time 3.1 of
the system clock and the network delay is 0.2 then, it arrives at the monitor at
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Fig. 2. Monitoring time intervals of aUp, +,b

time 9.6 (calculated by 3.1*3 + 0.2*1.5). However, since we know the clock rate
of the system is 0.5, the time on the perfect clock will be 6.2, which is larger
than 6. Therefore, even if b arrives when the monitor is monitoring the interval,
the monitor can still determine b does not belong to it. This example suggests
that the deadline for monitoring an interval depends only on the duration of
the interval and the relationship between the monitoring clock and the perfect
clock, but not on the system clock. At the same time, to determine whether an
event is within an interval depends on the relationship between the system clock
and the perfect clock, but not on the monitor clock. We will make this intuition
precise in Sections 4 and 5.

3 System Architecture and preliminaries

In this section, we will present the architecture for monitoring time intervals.
Then some preliminaries are given, including definitions of some key concepts
and parameters of monitoring setup to be explored in the paper.

3.1 Architecture

Fig. 3 illustrates the architecture for monitoring time intervals. To separate the
logic of time management, a module Interval Handler is introduced into the
monitor between the target system and the property checker. Both the Interval-
Handler and checker run under the monitor clock. The checker implements the
logic the property to be checked so the implementation detail is out of scope
of this paper. It receives two types of events from the IntervalHandler, one is
the original events for property evaluation. Another is a special event interval
closure introduced above, which is used to acknowledge to the checker the end
of a time interval.
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Fig. 3. Architecture for monitoring time intervals

A checker correctly evaluates the property for a time interval 4 if all events
occurring in ¢ are delivered to the checker when the property is being evaluated.
In the ideal situation, when events are delivered from the system to the monitor
immediately and there is no timing uncertainty, this can be easily achieved by
setting the timer in the IntervalHandler for the duration of i. Any event arriving
before the timer expires would be within ¢, while any event arriving after it
expires is outside ¢. Expiration of the timer immediately raises the closure event.
If events can be delayed, however, this approach may clearly result in incorrect
checking. The closure event must be delayed to accommodate for late events.
In order to close the interval in a timely manner, we need to set a deadline
for raising the closure event that would, on the one hand, guarantee correct
monitoring and, on the other hand, minimize the delay in closing the interval.
According to the duration on the time interval and parameters of the monitoring
setup, the IntervalHandler can calculate the deadline for each interval when the
monitoring process begins. When the current time at the monitor reaches the
deadline, the IntervalHandler will send interval closure event to the checker to
finish the evaluation of the property for this interval.

The deadline discussed above is useful in another way. If events can arrive
out of order, they also should be re-ordered according to their timestamps before
being passed on to the checker which, as we discussed above, does not reason
about time. In our approach, the IntervalHandler is storing events in a queue
in the timestamp order and uses the same deadline to release events from the
queue to the checker. We discuss event reordering further in Section 5.

3.2 Preliminaries

Time model. There are three time domains assumed: T;,, for the monitor clock,
T, for the system clock and Tj, for the perfect clock. The monitor takes streams
of events as input. Events are observations originated from the system. They
are timestamped using the system clock in the time domain Ts. The event and
monitor clocks can be skewed and run at different rates. In addition, there may
be unpredictable delays in delivering events from the target system to the mon-
itor. As a result, event timestamps are not directly comparable with readings
of the system clock. Moreover, elements in the time domain T,, and T are to-
tally ordered. An event stream FE7 is a sequence of timestamped observations
((01,t1), (02,t2),...), where o; is a value observed at time ¢; € T,,,. The perfect
clock ¢, in T}, is used to measure the length of the time interval being monitored.



Time interval is a period of time between two events, the duration of which
is measured by the perfect clock. In the remainder of the paper, when we refer
the interval on the system, we use “start” and “end” to denote the beginning and
ending of the interval. On the monitor side, an interval is “opened” or “closed”
by the monitor. A closed interval i that starts at ¢t; and ends at ¢y is denoted as
i[t,,t,]- For an event e originated from the system and an interval 4, if t; <t < o,
then e € i, 4,) where . is the timestamp of e. Note that if we don’t care about
events occurring on the bound(s), the interval could also be half-open or open
and the denotation will be modified accordingly.

Network delay, denoted as nd, represents the time to send the event from
the system to the monitor. The absolute value of the delay is measured in the
sense of perfect clock.

Clock rate is the interval of the finest time unit. It is assumed that the clock
rate of c,, denoted as 7y, is 1. The clock rate of the system and the monitor are
respectively denoted as rs and ry,. If 5 (ry,) is greater than 1, then the system
(monitor) clock runs ahead of the perfect clock.

Clock skew, denoted as ts, represents the time difference t,, —ts between the
monitor and the system where t; is the time of the system and ¢,, is the time of
the monitor. In this paper, we assume that time synchronization is periodically
conducted between (1) the system clock and the perfect clock and (2) the monitor
clock and the perfect clock.

4 Setting the Interval Deadline

In this section, we explore the parameter space of network delay, clock skew
and clock rate and identify several cases where correctness of monitoring can be
ensured. For each case, we describe how to calculate the deadline for closing the
interval. The monitor uses this deadline to set the timer; when the timer expires,
we can be certain that no further events belonging to this interval can arrive and
the closure event is sent to the checker. Patterns of setting the timer for non-
recurrent and recurrent intervals are presented respectively. Case analysis on the
three parameters is conducted.

4.1 Patterns of setting timer

We rely on timers to determine when an interval can be closed. The timers are
set differently based on whether the interval is recurrent or non-recurrent, shown
in Fig. 4. Note that the clock rate of the system rs is used to calculate the actual
time on the system side.

Non-recurrent intervals. Here we only consider the case involving two consec-
utive intervals such as the property aly, 4,10. In aUf, 4,10, two intervals, [0,t1)
and [t1, 2], are involved. The monitor begins checking [0, 1) and [t1, 2] when a
arrives and two corresponding timers are set to close the intervals.



Recurrent intervals. As the number of intervals to be monitored is unbounded,
only the timer for the first interval is set. Then every time an interval is closed,
the timer for closing the next interval is set with a proper monitoring deadline.
In the following section, we will denote the duration of the recurrent interval as
d.

system monitor
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Fig. 4. Scheme of setting deadlines for non-recurrent and recurrent intervals

In order to set the deadline as accurate as possible, two steps have to be
done. The first step is to estimate the time on the monitor side when e occurs on
the system side, denoted as t( in Fig. 4. The second step is to calculate deadlines
for each monitor based on tg, which is introduced below.

4.2 Scheme of setting deadline

Here we give the case analysis with varying the values of the clock rate, network
delay and clock skew with the assumption of bounded network delay. Fig. 4
illustrates the scheme of setting deadline for non-recurrent and recurrent inter-
vals. The time when the initial event e occurs on the system side is denoted as
initTsys, measured by the system clock and initTh is the time at the monitor
when e arrives at the monitor.

The monitor begins the monitoring process at initTy;. For the non-recurrent
case, ddly and ddl, for interval [0,¢1) and [t1, 2] need to be calculated. Then, as
the timers are set at initTh; with a relative value, deadline for [0, %) is set with
value ddi1—initTys+to and deadline for [ty, t2] is set with value ddI2—initThs+to.
For the recurrent case, the deadline for the first interval can be calculated in a
similar way to the non-recurrent case: ddl is calculated according to the duration
of interval and the monitoring setup and the deadline for the first interval is
ddl — initThs + to. From the second interval, timers are set with a period inter.
The reason the first interval is different from the rest of them is that for the
initial event e, we know the exact time when e arrives at the monitor, but for



the rest of intervals, we only consider the worst case where the last event for a
interval occurs at the boundary and the delay for the delivery is the maximum
value of the network delay. In the following case analysis, we will estimate the
value of ty and calculate ddl; and ddl, for the non-recurrent case; ddl and inter
for the recurrent case.

Case 1 :7, =1, 7, =1, nd = 0. In this case, interval durations of the
system and monitor are identical and there is no delay, so tg = initTy,;. For the
case of non-recurrent intervals, ddl; and ddl, are respectively t; and 5. For the
case of recurrent intervals, ddl and inter have the same value d since there is no
network delay.

Case 2 : v, = 1, 7, = 1, nd is fixed and known. In this case, clock skew
ts can be directly calculated by initThs — initTsys — nd and to = initTsy,s + ts.
For the case of non-recurrent intervals, ddl; and ddls are respectively t; + nd
and to 4+ nd since events occurring at the boundary of these two intervals have
the delay of nd. For the case of recurrent intervals, ddl is set to d + nd, similar
to the case of the non-recurrent interval. The value of inter is set to d because
the interval is of length d and the network delay has already been taken into
consideration when calculating the deadline of the first interval.

Case 3 : 7, = 1, 1, = 1, nd € [bl,b2], ts is known. As ts is known,
to = initT,ys + ts. We only need to consider the worst case in which network
delay has the maximum value, which is when an event e with timestamp ¢ arrives
on the monitor side at t 4+ b2. The least delay bl is not relevant for computing
deadlines. For the case of non-recurrent intervals, ddl; and ddl; are respectively
t1 + b2 and t5 + b2. For the case of recurrent intervals, ddl is d 4+ b2 and inter
has value d.

Case 4 : 7; = 1, ry, = 1, nd € [b1,b2], ts is unknown. The analysis is
similar to the case 4 but ¢y cannot be determined precisely since s is unknown
and network delay is not fixed. Consequently, we approximate its value using
the network delay. The worst case is when the value of tg is as late as possible.
Therefore, we set tg = initTy; — bl. The same formulas setting deadlines used
in case 3 are also used here.

Case 5: 1y is fixed, ry, € [r3,74], nd € [b1,b2], ts at time initTs,, is known.
Like in case 3, g is calculated using the formula ¢ty = initTs,s + ts. Because of
the clock rate difference between the system and the monitor, clock skew may
change. However, since we do not compare time values between the system and
the monitor anywhere else, the value of the clock skew does not affect calculations
of the deadline value. To cover the worst case of event arrival when calculating
the deadline, r,, and nd need to be at their upper bounds. For the case of non-
recurrent intervals, ddl; and ddly are respectively (1 +b2) 74 and (2 +b2) * r4.
For the case recurrent intervals, ddl has value (d + b2) * r4 and inter has value
dxrd.

Case 6: r; is fixed, r,, € [r3,r4], nd € [bl, 2], ts is unknown. Similar with
case 4, we need to approximate to using its maximum value: initThs — bl * r3.
The formulas used in case 6 are used in this case.



One can observe that case 5 and 6 are generalization of special cases 1 to
4 and there is no conflicts between them. The summary of case analysis on
deadline setting is shown in Table 1. We can prove that given monitoring setup
in case 5 and 6, correctness of monitoring intervals can be guaranteed, shown in
Lemma 1.

Table 1. Summary of deadline setting scheme

Monitoring setup Non-recurrent Recurren?
to ddll ddi2 ddl inter
rs=1rm=1,nd=0 nitT t1 to d
re = 1, 1y, = 1, nd is fixed and|initTsys +|t1 + nd to + nd d—+nd d
known, ts is known ts
rs = 1, rm = 1, nd € [b1,b2], ts is|initTsys +|t1 + b2 to + b2 d+ b2
known ts
rs =1, rm = 1, nd € [b1,b2], ts is|initTy —
unknown bl
rs is fixed, rn € [r3,74], nd €|initTsys +|(t1 + b2) *|(t2 + b2) *|(d + b2) * rd|d * r4
[b1,b2], ts at time initTsys is known|ts rd rd
rs is fixed, r,, € [r3,74], nd €linitTy —
[b1,b2], ts is unknown bl xr3

Lemma 1 (Correctness of Monitoring Interval for Setup in Case 5 and
6). If rs is fized, vy, € [r3,7r4] and nd € [b1,02], we can always set a deadline for
monitored intervals as illustrated in Table 1, such that all events of the interval
will fall within the deadline.

Proof Sketch. Based on whether ¢s is known at the beginning of monitoring
process, we split into two cases corresponding to case 5 and 6 above. Here we
give the sketch for proving the case of monitoring non-recurrent intervals [0, 7).
The proof for interval [¢1,t2] and recurrent intervals is similar. Recall that g
is the estimated time, by the monitor clock, when the initial event occurs on
the system side. The deadline is set in two steps, illustrated in Fig 4, and we
argue correctness of these two steps separately. First, we compute the largest
possible value for ¢y and this is correct because 1) if s known, we can calculate
the accurate time ¢y of the monitor given the timestamp of initTsys when the
initial event occurs on the system side; and 2) if ts is not known, we compute
to having the maximum value using the initT); and the lower bound of nd.
Then, we set the deadline relative to ty and we do it correctly because we over-
estimate the deadline with the upper bound of 7, and nd. Finally, we compare
the deadline with ¢,, the relative time between initT,,, and the latest possible
arrival time of the event occurring at ¢; at the monitor. The value of ¢, is t; + 52
in the sense of perfect clock. Translating deadline to the perfect time scale, the



value would be (¢; + b2) * r4/r,,, which is greater than or equal to ¢,. Since tg
is equal to or greater than the time when the initial event occurring within the
interval, we can always ensure that all events will fall within the deadline.

Lemma 1 can be extended to Theorem 1 describing sufficient condition for
correctly monitoring time intervals.

Theorem 1 (Correctness of Monitoring Interval). If rs is fixed, rp, is
bounded and nd is bounded, we can set a deadline for each monitored interval
as illustrated in Table 1 such that all events of the interval will arrive at the
monitor within the deadline.

Proof Sketch. The proof proceeds by case analysis of entries in Table 1. Note
that cases 1-4 are special cases of 5 and 6 and need not be considered separately.
The union of the monitoring setup conditions in Table 1 is exactly the premise
of the theorem. Therefore, correctness of cases 5 and 6, established by Lemma 1,
proves the theorem.

5 Monitoring Procedure

This section presents the procedure for monitoring time intervals using the
scheme of setting monitoring deadline proposed in the previous section. The
procedure describes operation of the IntervalHandler introduced in Section 3.1.

The procedure relies of two key functions. First, calculateDeadline sets the
deadline for each interval according to Section 4. Second, procedure getInterval
is given an event and returns an interval to which this event belongs, as fol-
lows. Given an event e with the timestamp ¢ and initTs,s which indicates the
occurring time of the initial event, we need to get the interval that e belongs to.
With the condition that the rate of the system rg is fixed, the interval can be
determined. For the non-recurrent interval, if ¢ —initT,,, < t1 *rs, e belongs to
the interval [0,¢1); if ¢4 * rs < t —initTsys < to x rs, e belongs to the interval
[t1,t2]; otherwise, e falls out of these two intervals. For the recurrent interval,
the interval is calculated using the formula | (t — initT,,s)/(d * rs)|.

Fig. 5 shows the detailed structure of the IntervalHandler and how it connects
to the PropertyChecker. IntervalHandler is responsible for managing intervals
and the checker evaluates the logic of the property. Note that the monitoring pro-
cess is slightly different between the cases of in-order-delivery and out-of-order
delivery. IntervalList is the data structure representing intervals of interest. In
the non-recurrent case, these are the two intervals [0,¢1) and [t1, t2]. In the recur-
rent case, if in-order delivery is assumed, we just need to remember the earliest
non-closed interval. For out-of-order delivery, IntervalList needs to remember
all non-closed intervals for which at least one event has been received. We also
associate a data structure eventQueue(i) for each interval ¢ in the Interval List:
each arrived event is put into corresponding eventQueue ordered by the times-
tamp. Once the interval i is closed — that is, no more events from this interval
can arrive, — the IntervalHandler sends all events in the eventQueue(i) to the
checker, followed by the interval closure event.
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Fig. 5. Structure for the IntervalHandler

In the IntervalHandler, intervalManager is used to relay events from the
system and manage intervals. It first examines whether the received event e is
the initial event arriving at the monitor. If so, it computes the deadline and
sets the timer for the first interval. Note that in the case of properties involving
two non-recurrent intervals, two timers with corresponding deadlines need to be
set. Then, the interval i that e belongs to is computed. If in-order delivery is
assumed, the current interval being evaluated by the checker, denoted as ', is
obtained from IntervalList by calling the procedure getLeastOpenedInt. If i is
not equal to ¢/, ¢’ is closed and corresponding closing timer will also be unset.
Event e is then sent to the checker. If out-of-order delivery is assumed, it is put
into corresponding eventQueue(i).

void intervalManager (){
while(true) {
Interval i;
Event e = receiveEvent();
if (initialEvent (e)){
initialTS = e.getSystemTimeStamp();
initialTM = getcurrentTime();
deadline = calculateDeadline();
setTimer (deadline,0);
}
i = getInterval(e);
if (out-of-order-delivery){
addQueue (e,eventQueue(i));

Yelseq{
i’ = getLeastOpenedInt();
if(i 1= i2){

closeInt(i’);
unsetTimer(i’);



}
PropertyChecker.handlingEvents(e) ;

Procedure closeInt(i) is responsible for closing the interval ¢, which is called
when the corresponding timer is up or an event for the next interval has arrived in
the case of in-order delivery. It first calculates the deadline for the next interval
i + 1 to be evaluated and sets the corresponding timer. For the case of non-
recurrent interval, the timer will not be not set. Then the queued events from
eventQueue(i) is be sent to the checker. For in-order delivery, there is no action
on event queue. Finally, interval i is closed by sending intervalClosure(i) to the
checker. For the case of recurrent interval, interval ¢ is removed from Interval List
and ¢ + 1 is set as the earliest non-closed interval.

void closelInt(integer i){
ddl = calculateDeadline();
setTimer(ddl, i+1);
liste = getEventsForQueue(eventQueue(i));
PropertyChecker.handlingEvents(liste);
intervalClosure(i);

6 Discussion and Conclusions

This paper presented an approach to monitoring of time intervals in an event-
driven fashion. To do this, we introduced an interval closure event, with the
property that all events that fall into the interval occur before the interval clo-
sure. The two challenges are (1) correctness of the procedure and (2) timeliness
of the event closure. To address these two challenges, we offer a procedure to
determine when all events that can fit into the interval have been observed. The
answer to this question depends on parameters of monitoring setup, namely net-
work delay, clock skew between the system and the monitor and clock rates of
the two. We perform case analysis and show how to close intervals in different
cases.

This work has two limitations. First, we can exactly determine when we have
seen all the events only if the network delay is bounded. Second, we assumed
that we can precisely determine whether a given event is within the bounds of
an interval or outside. In general, neither of these two assumptions are true. This
means that the monitoring procedure needs to be augmented to accommodate
the uncertainty. Below, we offer preliminary remarks on what extensions may be
needed.

Unbounded network delay. If the monitoring system is built on a compli-
cated network environment, the network delay can be unbounded. This means
we cannot guarantee that the deadline will be sufficiently large to receive all



events from the system. We have to accept that, occasionally, an interval will be
closed prematurely. A possible approach is to quantify the probability of error.

For example, we consider the delay distribution where events are independent
with each other. To simplify the analysis, following assumptions are also made:
(1) the system and the monitor has perfect clocks, (2) there is no clock skew,
and (3) the event occurrence is distributed uniformly. With these assumptions,
we can set a deadline that ensures the probability for one event occurring in the
current interval falls out of it is less than 1 — p. This relation can be represented
as the formula below. According to the assumption, P;(t) is 1/d and P, is the
CDF of delay distribution.

d
/ Py (t)Py(delay > d + deadline —t) <1 —p
0

For a more realistic approach, we can consider more widely used self-similar
traffic models [13] such as Pareto distribution and Weibull distribution. Different
from the memoryless Poisson distribution, self-similar traffic models can perform
better in modeling burstiness of traffic in the multiple time scales [14]. Events
are not independent with each other and arrivals of events will heavily influence
the model.

With this approach we can have a monitoring procedure with probabilistic
guarantees of correctness. Moreover, once we discover an event that belongs to
an already-closed interval, we know that a monitoring error has occurred. The
property checker needs to be notified of the error, which may invalidate some of
the checking results. In the case of interval statistics, it may be acceptable to
discard the statistics for one of the intervals. In the case of temporal monitoring,
we need to determine, which parts of the formula are affected by the error. We
will consider a three-valued semantics for the temporal logic, with the “unknown”
value corresponding to an error.

Uncertainty in the system clock rate. We need to determine whether
an event, timestamped with the system clock, falls within an interval, whose
boundaries are determined by the perfect clock. However, if ¢ can vary, then an
event close enough to an interval boundary cannot be precisely placed. In this
case, we can also use a 3-valued semantics, with the third value representing the
uncertainty whether the event occurs before or after the interval closure event.

It remains to be seen whether the two three-valued approaches — the one
capturing an error and the one capturing the ordering uncertainty — can be
combined together in an effective checking procedure. We will explore these
questions in future work.
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