310 research outputs found

    Multiphysics analyses of the effect of package on the performances of PMUT transducers

    Get PDF
    The paper deals with the multiphysics modeling of piezoelectric micromachined ultrasound transducers (PMUT), that can be used in several practical applications. The model accounts for the multiple couplings between the mechanical fields and the electric and acoustic ones. The numerical solution has been sought by means of the finite element method, for the special case of axial symmetry. The model has been validated with reference to experimental data, that have been obtained by the Authors. The numerical procedure has been applied to carry out a parametric analysis of the effect of package, to extract a set of design guidelines

    thermographic analysis during tensile tests and fatigue assessment of s355 steel

    Get PDF
    Abstract Structural S355 steel is widely applied in various sectors. Fatigue properties are of fundamental importance and extremely time consuming to be assessed. The aim of this research activity is to apply the Static Thermographic Method during tensile tests and correlate the temperature trend to the fatigue properties of the same steel. The Digital Image Correlation (DIC) and Infrared Thermography (IR) techniques have been used during all static tests. The Digital Image Correlation technique allowed the detection of displacements and strain, and so the evaluation of the mechanical properties of the material. Traditional fatigue tests were also performed in order to evaluate the stress-number of cycles to failure curve of the same steel. The value of the fatigue limit, obtained by the traditional procedure, was compared with the values predicted by means of the Static Thermographic Method (STM) obtained from tensile tests. The predicted values are in good agreement with the experimental values of fatigue life

    An Experimental and Numerical Study on Glass Frit Wafer-to-Wafer Bonding

    Get PDF
    A thermo-mechanical wafer-to-wafer bonding process is studied through experiments on the glass frit material and thermo-mechanical numerical simulations to evaluate the effect of the residual stresses on the wafer warpage. To experimentally characterize the material, confocal laser profilometry and scanning electron microscopy for surface observation, energy dispersive X-ray spectroscopy for microstructural investigation, and nanoindentation and die shear tests for the evaluation of mechanical properties are used. An average effective Young’s modulus of 86.5 ± 9.5 GPa, a Poisson’s ratio of 0.19 ± 0.02, and a hardness of 5.26 ± 0.8 GPa were measured through nanoindentation for the glass frit material. The lowest nominal shear strength ranged 1.13 ÷ 1.58 MPa in the strain rate interval to 0.33 ÷ 4.99 × 10 (Formula presented.) s (Formula presented.). To validate the thermo-mechanical model, numerical results are compared with experimental measurements of the out-of-plane displacements at the wafer surface (i.e., warpage), showing acceptable agreement

    Air-coupled PMUT at 100 kHz with PZT active layer and residual stresses: Multiphysics model and experimental validation

    Get PDF
    In this paper a complete Multiphysics modelling via the Finite Element Method (FEM) of an air-coupled Piezoelectric Micromachined Ultrasonic Transducer (PMUT) is described, with its experimental validation related to the mechanical and acoustic responses

    THE IMPLANT TREATMENT OF TWO PATIENTS SUFFERING FROM SJÖGREN’S SYNDROME WITH MULTIFACTORIAL REGENERATIVE PROTOCOL

    Get PDF
    The purpose of the work is to show that it is possible to rehabilitate with Multifatorial Regenerative Protocol (MFRP) also the patients with diseases considered to be absolute contraindications to the implant rehabilitation. For the rehabilitation it has been used the PBR rehabilitation technique, that allows to insert prosthetic roots not excessively traumatizing the bone tissue and to avoid the use of high speed rotary burs. Despite the disease and the poor bone quality, it has been possible to obtain the osteo-connection only in 45 days. Using the MFRP implants, it is possible to rehabilitate with a high percentage of success also patients with poor bone quality and density

    PMUTs Arrays for Structural Health Monitoring of Bolted-Joints

    Get PDF
    Micro-electro-mechanical systems (MEMS) have enabled new techniques for the miniaturization of sensors suitable for Structural Health Monitoring (SHM) applications. In this study, MEMS-based sensors, specifically Piezoelectric Micromachined Ultrasonic Transducers (PMUT), are used to evaluate and monitor the pre-tensioning of a bolted joint structural system. For bolted joints to function properly, it is essential to maintain a suitable level of pre-tensioning. In this work, an array of PMUTs attached to the head and to the end of a bolt, serve as transmitter and receiver, respectively, in a pitch-catch Ultrasonic Testing (UT) scenario. The primary objective is to detect the Change in Time of Flight (CTOF) of the acoustic wave generated by the PMUT array and propagating along the bolt’s axis between a non-loaded bolt and a bolt in service. To model the pre-tensioning of bolted joints and the transmission of the acoustic wave to and from a group of PMUTs through the bolt, a set of numerical models is created. The CTOF is found to be linearly related to the amount of pre-tensioning. The numerical model is validated through comparisons with the results of a preliminary experimental campaign

    Graded elastic metasurface for enhanced energy harvesting

    Get PDF
    In elastic wave systems, combining the powerful concepts of resonance and spatial grading within structured surface arrays enable resonant metasurfaces to exhibit broadband wave trapping, mode conversion from surface (Rayleigh) waves to bulk (shear) waves, and spatial frequency selection. Devices built around these concepts allow for precise control of surface waves, often with structures that are subwavelength, and utilise Rainbow trapping that separates the signal spatially by frequency. Rainbow trapping yields large amplifications of displacement at the resonator positions where each frequency component accumulates. We investigate whether this amplification, and the associated control, can be used to create energy harvesting devices; the potential advantages and disadvantages of using graded resonant devices as energy harvesters is considered. We concentrate upon elastic plate models for which the A0 mode dominates, and take advantage of the large displacement amplitudes in graded resonant arrays of rods, to design innovative metasurfaces that trap waves for enhanced piezoelectric energy harvesting. Numerical simulation allows us to identify the advantages of such graded metasurface devices and quantify its efficiency, we also develop accurate models of the phenomena and extend our analysis to that of an elastic half-space and Rayleigh surface waves

    Gender-related time course of sleep disturbances and psychological symptoms during the COVID-19 lockdown: a longitudinal study on the Italian population

    Get PDF
    Italy was the first western hotspot of the COVID-19 pandemic. In order to contain the spread of the virus, the Italian Government imposed home confinement to the entire population for almost two months. The present study is the first large-scale longitudinal report of the sleep and mental health changes during the prolonged lockdown due to the COVID-19 outbreak. We focused on the gendered vulnerability in a sample of the Italian population since cross-sectional research identified women to be more at-risk than men during this unprecedented situation. A total of 2701 individuals (mean age ± standard deviation, 32.37 ± 11.62; range, 18–82) participated in a web-based longitudinal survey consisting of two measurements. Participants were first-time recruited on social networks and via telephone messages through a snowball sampling and tested during the third week of the lockdown period. Subsequently, a follow-up evaluation was carried out during the seventh week of restraining measures. The survey assessed sleep quality, insomnia and depression symptoms, perceived stress, and anxiety, using the following questionnaires: the Pittsburgh Sleep Quality Index, the Insomnia Severity Index, the Beck Depression Inventory-second edition, the 10-item Perceived Stress Scale, and the State-Anxiety Inventory. Female gender showed the worst condition for all the examined dimensions in both the assessments. Nevertheless, at the follow-up women reported a reduction in insomnia and depression severity symptoms, perceived stress, and anxiety. On the other hand, male participants showed a worsening of sleep quality, insomnia symptoms, and perceived stress. Consequently, the gender prevalence gap of clinical conditions such as insomnia and depression was largely reduced under lockdown. Our investigation pointed to a different time course of sleep and mental health between genders during the home confinement period. Women seemed to show greater long-term resilience during the lockdown. Meanwhile, the male gender emerges as the most vulnerable category to the extension of the restraining measures. Our results suggest that there is no “weaker gender” after a prolonged lockdown. Indeed, the Italian population transversely presented signs of psychological suffering and significant sleep disturbances after the protracted and stressful lockdown period due to the COVID-19 pandemic

    Fatigue assessment of Ti-6Al-4V titanium alloy laser welded joints in absence of filler material by means of full-field techniques

    Get PDF
    The aim of this research activity was to study the fatigue behavior of laser welded joints of titanium alloy, in which the welding was performed using a laser source and in the absence of filler material, by means of unconventional full field techniques: Digital Image Correlation (DIC), and Infrared Thermography (IRT). The DIC technique allowed evaluating the strain gradients around the welded zone. The IRT technique allowed analyzing the thermal evolution of the welded surface during all the fatigue tests. The fatigue limit estimated using the Thermographic Method corresponds with good approximation to the value obtained from the experimental fatigue tests. The obtained results provided useful information for the development of methods and models to predict the fatigue behavior of welded T-joints in titanium alloy
    • …
    corecore