8,781 research outputs found

    Studies of hot B subdwarfs. Part 2: Energy distributions of three bright sdB/sdOB stars in the 950-5500 angstrom range

    Get PDF
    Voyager ultraviolet spectrometer observations of the subdwarf B or OB stars HD 205805, UV 1758+36 and Feige 66 are presented. All three objects display the H I Layman series in absorption. These observations are combined with low dispersion IUE spectrophotometry and with Stroemgren photometry to construct virtually complete energy distributions, which extend over the range 950-5500 angstroms. Effective temperatures based on model atmosphere calculations for high gravity, hydrogen rich stars are determined. Our analyses yield T Sub e 28,200 + or - 1300 K for HD 205805, T sub e 31, 800 + or - 1100 K for UV 1758+36, and T sub e 35,700 + or - 1500 K for Feige 66. The importance of far ultraviolet observations below L sub alpha in reducing the uncertainties associated with the interstellar extinction and the degradation of the IUE sensitivity is emphasized

    Spectral analysis and abundances of the post-HB star HD 76431

    Full text link
    HD76431 is a slow rotating post-HB star that shows an underabundance of helium by 0.5 dex relative to the solar value. These observational facts suggest that atomic diffusion could be active in its atmosphere. We have used the MMT and Bok spectra to estimate the atmospheric parameters of the target star using the model atmospheres and synthetic spectra calculated with TLUSTY and SYNSPEC. The derived values of the effective temperature, surface gravity, helium abundance are consistent with those obtained by Ramspeck et al. (2001b). It appears that NLTE effect are not important for HD76431. We have used Stokes I spectra from ESPaDOnS at CFHT to perform an abundance analysis and a search for observational evidence of vertical stratification of the abundance of certain elements. The results of our abundance analysis are in good agreement with previously published data with respect to average abundances. Our numerical simulations show that carbon and nitrogen reveal signatures of vertical abundance stratification in the atmosphere of HD76431. It appears that the carbon abundance increases toward the deeper atmospheric layers. Nitrogen also shows a similar behaviour, but in deeper atmospheric layers we obtain a significant dispersion for the estimates of its abundance. To our knowledge, this is the first demonstration of vertical abundance stratification of metals in a post-HB star and up to now it is the hottest star to show such stratification features. We also report the detection of two SiIII and one TiIII emission lines in the spectra of HD76431 that were not detected in previous studies.Comment: 7 pages, 5 figures, accepted for publication in MNRA

    Hot DQ White Dwarfs: Something Different

    Full text link
    We present a detailed analysis of all the known Hot DQ white dwarfs in the Fourth Data Release of the Sloan Digital Sky Survey (SDSS) recently found to have carbon dominated atmospheres. Our spectroscopic and photometric analysis reveals that these objects all have effective temperatures between ~18,000 and 24,000 K. The surface composition is found to be completely dominated by carbon, as revealed by the absence of Hbeta and HeI 4471 lines (or determination of trace amount in a few cases). We find that the surface gravity of all objects but one seems to be ''normal'' and around log g = 8.0 while one is likely near log g = 9.0. The presence of a weak magnetic field is directly detected by spectropolarimetry in one object and is suspected in two others. We propose that these strange stars could be cooled down versions of the weird PG1159 star H1504+65 and form a new family of hydrogen and helium deficient objects following the post-AGB phase. Finally, we present the results of full nonadiabatic calculations dedicated specifically to each of the Hot DQ that show that only SDSS J142625.70+575218.4 is expected to exhibit luminosity variations. This result is in excellent agreement with recent observations by Montgomery et al. who find that J142625.70+575218.4 is the only pulsator among 6 Hot DQ white dwarfs surveyed in February 2008.Comment: 33 pages, 7 figures, accepted for publication in Ap

    Detailed Spectroscopic and Photometric Analysis of DQ White Dwarfs

    Full text link
    We present an analysis of spectroscopic and photometric data for cool DQ white dwarfs based on improved model atmosphere calculations. In particular, we revise the atmospheric parameters of the trigonometric parallax sample of Bergeron et al.(2001), and discuss the astrophysical implications on the temperature scale and mean mass, as well as the chemical evolution of these stars. We also analyze 40 new DQ stars discovered in the first data release of the Sloan Digital Sky Survey.Comment: 6 pages,3 figures, 14th European Workshop on White Dwarfs, ASP Conference Series, in pres

    FUSE observations of G226-29: First detection of the H_2 quasi-molecular satellite at 1150A

    Full text link
    We present new FUV observations of the pulsating DA white dwarf G226-29 obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). This ZZ Ceti star is the brightest one of its class and the coolest white dwarf observed by FUSE. We report the first detection of the broad quasi-molecular collision-induced satellite of Ly-beta at 1150 A, an absorption feature that is due to transitions which take place during close collisions of hydrogen atoms. The physical interpretation of this feature is based on recent progress of the line broadening theory of the far wing of Ly-beta. This predicted feature had never been observed before, even in laboratory spectra.Comment: Accepted for publication in ApJ Letters; 6 pages, 3 figure

    Thermo-statistical description of gas mixtures from space partitions

    Get PDF
    The new mathematical framework based on the free energy of pure classical fluids presented in [R. D. Rohrmann, Physica A 347, 221 (2005)] is extended to multi-component systems to determine thermodynamic and structural properties of chemically complex fluids. Presently, the theory focuses on DD-dimensional mixtures in the low-density limit (packing factor η<0.01\eta < 0.01). The formalism combines the free-energy minimization technique with space partitions that assign an available volume vv to each particle. vv is related to the closeness of the nearest neighbor and provides an useful tool to evaluate the perturbations experimented by particles in a fluid. The theory shows a close relationship between statistical geometry and statistical mechanics. New, unconventional thermodynamic variables and mathematical identities are derived as a result of the space division. Thermodynamic potentials μil\mu_{il}, conjugate variable of the populations NilN_{il} of particles class ii with the nearest neighbors of class ll are defined and their relationships with the usual chemical potentials μi\mu_i are established. Systems of hard spheres are treated as illustrative examples and their thermodynamics functions are derived analytically. The low-density expressions obtained agree nicely with those of scaled-particle theory and Percus-Yevick approximation. Several pair distribution functions are introduced and evaluated. Analytical expressions are also presented for hard spheres with attractive forces due to K\^ac-tails and square-well potentials. Finally, we derive general chemical equilibrium conditions.Comment: 14 pages, 8 figures. Accepted for publication in Physical Review

    Multiwavelength Observations of the Hot DB Star PG 0112+104

    Full text link
    We present a comprehensive multiwavelength analysis of the hot DB white dwarf PG 0112+104. Our analysis relies on newly-acquired FUSE observations, on medium-resolution FOS and GHRS data, on archival high-resolution GHRS observations, on optical spectrophotometry both in the blue and around Halpha, as well as on time-resolved photometry. From the optical data, we derive a self-consistent effective temperature of 31,300+-500 K, a surface gravity of log g = 7.8 +- 0.1 (M=0.52 Msun), and a hydrogen abundance of log N(H)/N(He) < -4.0. The FUSE spectra reveal the presence of CII and CIII lines that complement the previous detection of CII transitions with the GHRS. The improved carbon abundance in this hot object is log N(C)/N(He) = -6.15 +- 0.23. No photospheric features associated with other heavy elements are detected. We reconsider the role of PG 0112+104 in the definition of the blue edge of the V777 Her instability strip in light of our high-speed photometry, and contrast our results with those of previous observations carried out at the McDonald Observatory.Comment: 10 pages in emulateapj, 9 figures, accepted for publication in Ap

    On a Conjecture of Rapoport and Zink

    Full text link
    In their book Rapoport and Zink constructed rigid analytic period spaces FwaF^{wa} for Fontaine's filtered isocrystals, and period morphisms from PEL moduli spaces of pp-divisible groups to some of these period spaces. They conjectured the existence of an \'etale bijective morphism Fa→FwaF^a \to F^{wa} of rigid analytic spaces and of a universal local system of QpQ_p-vector spaces on FaF^a. For Hodge-Tate weights n−1n-1 and nn we construct in this article an intrinsic Berkovich open subspace F0F^0 of FwaF^{wa} and the universal local system on F0F^0. We conjecture that the rigid-analytic space associated with F0F^0 is the maximal possible FaF^a, and that F0F^0 is connected. We give evidence for these conjectures and we show that for those period spaces possessing PEL period morphisms, F0F^0 equals the image of the period morphism. Then our local system is the rational Tate module of the universal pp-divisible group and enjoys additional functoriality properties. We show that only in exceptional cases F0F^0 equals all of FwaF^{wa} and when the Shimura group is GLnGL_n we determine all these cases.Comment: v2: 48 pages; many new results added, v3: final version that will appear in Inventiones Mathematica

    Phenomenology of the Equivalence Principle with Light Scalars

    Get PDF
    Light scalar particles with couplings of sub-gravitational strength, which can generically be called 'dilatons', can produce violations of the equivalence principle. However, in order to understand experimental sensitivities one must know the coupling of these scalars to atomic systems. We report here on a study of the required couplings. We give a general Lagrangian with five independent dilaton parameters and calculate the "dilaton charge" of atomic systems for each of these. Two combinations are particularly important. One is due to the variations in the nuclear binding energy, with a sensitivity scaling with the atomic number as A−1/3A^{-1/3}. The other is due to electromagnetism. We compare limits on the dilaton parameters from existing experiments.Comment: 5 page

    Charge Order in the Falicov-Kimball Model

    Full text link
    We examine the spinless one-dimensional Falicov-Kimball model (FKM) below half-filling, addressing both the binary alloy and valence transition interpretations of the model. Using a non-perturbative technique, we derive an effective Hamiltonian for the occupation of the localized orbitals, providing a comprehensive description of charge order in the FKM. In particular, we uncover the contradictory ordering roles of the forward-scattering and backscattering itinerant electrons: the latter are responsible for the crystalline phases, while the former produces the phase separation. We find an Ising model describes the transition between the phase separated state and the crystalline phases; for weak-coupling we present the critical line equation, finding excellent agreement with numerical results. We consider several extensions of the FKM that preserve the classical nature of the localized states. We also investigate a parallel between the FKM and the Kondo lattice model, suggesting a close relationship based upon the similar orthogonality catastrophe physics of the associated single-impurity models.Comment: 39 pages, 6 figure
    • …
    corecore