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The new mathematical framework based on the free energy of pure classical fluids presented by Rohrmann
[Physica A 347, 221 (2005)] is extended to multicomponent systems to determine thermodynamic and struc-
tural properties of chemically complex fluids. Presently, the theory focuses on D-dimensional mixtures in the
low-density limit (packing factor 7<<0.01). The formalism combines the free-energy minimization technique
with space partitions that assign an available volume v to each particle. v is related to the closeness of the
nearest neighbor and provides a useful tool to evaluate the perturbations experimented by particles in a fluid.
The theory shows a close relationship between statistical geometry and statistical mechanics. New, unconven-
tional thermodynamic variables and mathematical identities are derived as a result of the space division.
Thermodynamic potentials w;;, conjugate variable of the populations N;; of particles class i with the nearest
neighbors of class [ are defined and their relationships with the usual chemical potentials wu; are established.
Systems of hard spheres are treated as illustrative examples and their thermodynamics functions are derived
analytically. The low-density expressions obtained agree nicely with those of scaled-particle theory and Percus-
Yevick approximation. Several pair distribution functions are introduced and evaluated. Analytical expressions
are also presented for hard spheres with attractive forces due to Kac-tails and square-well potentials. Finally,

we derive general chemical equilibrium conditions.
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I. INTRODUCTION

The detailed knowledge of atomic and molecular popula-
tions is essential to analyze and evaluate accurately thermo-
dynamic properties and chemical processes in fluids as well
as their monochromatic opacities. In particular, they are re-
quired in studies of stellar interiors, atmospheres and circum-
stellar envelopes. Gas densities in stellar atmospheres and
circumstellar structures are low, they are hardly higher than
0.001 g cm™. Nevertheless, in these cases it is necessary to
deal with a high variety of particles and electronic configu-
rations and therefore, with a series of physical processes to
calculate the radiation emitted by the star accurately [1,2].

Among the most difficult challenges in determining gas
models is to obtain self-consistently atomic densities and
opacity absorption coefficients by taking into account the
nonideal effects. The source of nonideal effects is the pres-
ence of Coulombic interactions between charged particles as
well as due to the short-ranged interactions between neutral-
neutral and neutral-charged particles. Due to its relevance
and complexity, the elaboration of gas models from mechani-
cal statistical approaches is still an active area of research
today [3-12].

The present study is motivated by the difficulties of pre-
dicting quantitatively the optical properties of stellar atmo-
spheres. In typical gas models the opacity data are obtained
through a complimentary calculation once the equations of
state and mean abundances of bound states are obtained. This
procedure can produce, however, internal inconsistencies in a
model, mainly when the abundances of atoms are calculated
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using internal energies that are different from those assumed
to obtain the radiative transitions [13,14]. This can lead to
serious disagreements between predictions and observations
or experiments (e.g., the unphysical Lyman opacity [15]).
Therefore, it is highly desirable to develop a theoretical for-
malism that treats atoms subjected to different perturbations
by considering them in separate groups and evaluate accord-
ingly the populations and opacities in a consistent way. Such
a gas model must then consider explicitly not only all atomic
excited states but also do they need to discriminate different
perturbation states with the use of an appropriate particle-
state variable. Our work is then oriented to develop a model
with these characteristics.

With the aim of establishing a detailed and accurate equa-
tion of state for fluids, in a previous work we have developed
a gas statistical formalism which combines free energy mini-
mization methods with space partitions [13]. The feature of
this formalism, as compared to other more standard and
well-established statistical-mechanical theories of the fluid-
liquid state, is the attempt of keeping trace, in a thermody-
namically self-consistent way, of a more refined structural
information on the local environment of a given particle
through an extra parameter, the “available volume,” which is
determined by the distance of the reference particle to its
closest neighbor. For noninteracting particles, the available
volume “v” is equivalent to the spherical volume whose ra-
dius is the distance between the respective centers of the
particle and its nearest neighbor. This volume is considerably
smaller for particles with repulsive interactions. The theory
[13] was formulated for one-component dilute fluids, where
the Helmholtz free energy is written in terms of the occupa-
tion number distribution N, of the v variable and where the
particle interactions are introduced using pair potentials. The
result thus obtained represents a unified treatment of thermo-
dynamics and the structure of fluids. The formulation was
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applied to hydrogen atoms in an electrically neutral medium
of charged particles encompassing ions and electrons. The
atomic populations were derived by establishing groups of
atoms having different plasma perturbations measured ac-
cording to the size of their available space volumes v. Al-
though the results obtained are only illustrative of its pos-
sible performances, this theory represents the first attempt of
evaluating in detail the populations by combining consis-
tently the plasma interaction effects.

Approaches based on space partitions were attempted in
the past with the so-called “cell” theories to obtain equations
of state for fluids. However, the character of these space
divisions is quite different as compared to that employed in
Ref. [13] and in the present paper. The cell models [16—18]
were originally developed by Eyring and Hirschfelder [19]
and by Lennard-Jones and Devonshire [20]. They were in-
spired by the latticelike configurations acquired by some sys-
tems at high densities. In such theories the fluid volume is
divided into an imaginary lattice of cells. Each particle is
then confined into a cell, which implies that a space partition
is assumed beforehand, instead of being deduced from the
model proper. Besides, by ignoring the interchange of par-
ticles between cells, an error is introduced in the system-
entropy calculation, which is usually corrected using an ar-
bitrary “communal entropy” factor.

The perspective of the theory presented in Ref. [13] is
new, as it determines a space division by assigning the v
volume to the particles. This is achieved by minimizing the
system free energy under the condition that the sum of all v
volumes be equivalent to the entire volume of the fluid. In
this procedure, no particle confinement is established, be-
cause the assignment of an individual volume to each par-
ticle does not introduce any ownership connection between
space regions and particles, i.e., v does not carry any infor-
mation on the particle coordinates. Therefore, the formula-
tion presented in Ref. [13] is free from difficulties that are
inherent to the cell theories, i.e., entropy corrections, and it
can provide new results, such as the combined thermody-
namical and structural information of a fluid, which cannot
be derived from the cell models.

In the present paper we generalize the formalism to
D-dimensional multicomponent fluids that was initially de-
veloped in Ref. [13] only for pure or single-component sub-
stances. It aims at giving particularly simple analytic forms
to provide a unified derivation of thermodynamic and geo-
metric properties that characterize them. The formulation of
the theory is general, but attention is focused on its applica-
tion to hard sphere models, which represent the repulsive
interactions among atoms and geometrically simple mol-
ecules [21]. We also include the analysis of hard spheres with
weak long-range attraction (Kac type) and hard spheres with
square-well potential. The approximations discussed here
should be suitable for more realistic short-ranged potentials,
like those governing many atomic and colloidal fluids. Our
introduction of space partitions in statistical thermodynamics
marks a considerable progress in the description of gases
with respect to previous theories, since it gives the possibil-
ity of obtaining thermodynamic and structural information
on fluids simultaneously and self-consistently. The present
extension to multicomponent fluids enables us to treat arbi-
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trarily complex chemical mixtures by including systemati-
cally the interparticle interaction potentials. The theory can
have many applications, not only in astrophysics, but also in
other fields such as the analysis of colloidal and protein so-
lutions in biochemistry.

In the following sections, we first introduce a description
of states of a gas mixture based on space partitions. General
expressions for the Helmholtz free energy are presented in
Sec. III and the thermodynamic equilibrium states are de-
rived in Sec. IV. We analyze there some nonconventional
thermodynamic variables that are generated by the theory
and derive general expressions to calculate chemical poten-
tials. Then, applications of the formalism to a few multicom-
ponent systems based on hard particles with and without
attractive forces are given in Sec. V. The results obtained are
compared with those from Percus-Yevick and scale particle
theories. In Sec. VI we extend the theory to include chemical
reactions in the gas. The conclusions are presented in Sec.
VIL

II. GAS STATES

The approach developed here is inspired by the variety of
spatial patterns shown by fluids where the particles have dif-
ferent types of interactions. The main assumption that will be
made is that the spatial structure of a gas in equilibrium can
be described by an appropriate division of the space among
the particles. The study of single-component fluids at low
densities [13] has shown that the volume v assigned to a
particle depends on the interactions the particle has with the
closest neighbor. In Sec. V we give a formal definition of the
closest neighbor. According to the mentioned result, the gen-
eralization of the formalism to multicomponent fluid systems
(mixtures), requires that the particle population N; of each
chemical species i be divided into subgroups or subclasses in
accordance with the chemical species of the nearest neigh-
bor, i.e.,

Ni=Nj+Np+Np+ - . (1)

where the subindices 1,2,3,... specify the various chemical
species of the closest neighbors. We consider that for any
reference particle in whatever configuration of N particles,
there is one and only one jth neighbor, with 1 =j=N-1.
This means that if there is degeneracy where two particles
can be equidistant from the reference, one of them will be
designated as the jth neighbor arbitrarily, while the other will
be the (j+ 1)th neighbor. In what follows we shall use the
subindex ilv for a particle of class i that has individual avail-
able volume v, whose nearest neighbor is of class /. The state
of the gas will then be described by the following collec-
tions:

Ni Nigy

Nty Nogy O=v=V), (2)

where N;,dv is the number of particles ilv with available
individual volumes ranging from v to v+dv. The physically
acceptable states in (2) must obey the particle number N;; and

041120-2



THERMOSTATISTICAL DESCRIPTION OF GAS...

gas volume V conservation conditions given by

v
Ny = f Nipdv, (3)
0

\%4
UNy,dv. 4)

V=2
il

Thus, the individual volume v assigned to each particle acts
as an attribute inherent to each particle and the sum of v
spaces is equivalent to the entire volume of the gas. This
space partition does not involve any knowledge of particle
positions, since the assignment of a v volume to each particle
does not carry any information on the particle coordinates.

III. HELMHOLTZ FREE ENERGY

To evaluate the free energy of the gas we use a composi-
tion of translation-, configuration-, and interaction-dependent
terms,

F = Fians + Feont + Uines (5)

which is suitable for a large variety of fluids [22]. The first
two contributions to F can be written, respectively, as

w o (A
Firans = E ’;v (?)dv, (6)
lll} Niluv)
dv, 7
conf % 0 ﬁ < Ni v ()

where B8=(kT)™!, k is the Boltzmann constant, 7T is the tem-
perature, and A; is the thermal wavelength of particles of
class i. F ., was obtained following the steps described in
Ref. [13], except that in the present case was done for a gas
mixture. For the multicomponent system, we have then the
total number of ways W to generate a set {N,;,} of occupation
numbers from the individual complexions W; is W=IL;W,,
where

N;j,dv

ilv

(dvlV)
Wi o ®

Therefore, according to Ref. [13] the configuration entropy is

14
N;,V
SCO“f:klnwz_kz llv h’l( - >dv, (9)
i Jo N;

which finally determines (7), since Fou=—TSons-
The interaction can be generalized in the same way as
follows:

Uint=2 zlv(z —&l)dva (10)
il 0

= 2v

where the pair-interaction factors ¢y, ; are
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V’
¢ilv,j:f Ui, (©) gy (W)dw. (11)
0

In (11), uy, ; is the interaction potential between a particle of
class ilv and another of class j. The distribution function of
particles j with respect to the reference particle ilv is written
as g;, ;- We note that the integration variable w in Eq. (11) is
a spherical volume centered at the particle of class i and that
V' denotes the minimum w volume able to enclose the entire
volume of the mixture. The total free energy of the gas mix-
ture is then

1
e [ {2 2],

IV. EQUILIBRIUM STATES

The equilibrium distributions N, are obtained by mini-
mizing the free energy (12) and taking into account the con-
servation conditions given by Egs. (3) and (4). The minimiz-
ing procedure must take into account that the variations 6Ny,
affect the total particle populations of each species according
to the relation

14
N;=2 fo Njpdv. (13)
We thus obtain for the state of equilibrium
N;
Ny, = D expl— By — pi + €, + €)1, (14)
where
¢l U,
€y = E ! (15)
J
and
E 2V ij ¢jmv,idv . (16)

jm

In Eq. (14), w; and vy are the Lagrange multipliers corre-
sponding to conditions (3) and (4), respectively. Accordingly,
the potentials w;; determine the total population of particles i
and their redistribution into subsets as a function of the near-
est neighbor class. The variable vy determines the distribution
of individual available volumes v.

It is useful to note that the total interaction energy can
also be written as

1m—2N5—2

llv llvdv ’ (1 7)

which enable us to see that ¢; is the average energy due to all
interactions the particle of class i has with the gas, while €,
represents the interaction energy of the ilv particle with the
gas. Finally, using (14) and (12) we can write the equilibrium
free energy for multicomponent gases in the Eulerian form

F=—yV+ 2 pyNy— Uy (18)
il
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A. Lagrange parameters

Relation (A5) obtained in the Appendix and (18) help us
to show easily that u;; behaves as a thermodynamic potential
associated to the N;; population,

oF

aNil T.V.N

iy = (19)

jm#il
Similarly, making use of (18) and (A10) we find that 7y re-

lates to the pressure P in the already known way for single-
component fluids [13],

Uint
P=vy+—, 20
Y+, (20)

i.e., the gas pressure is the sum of 7y and the interaction-
energy density.

B. Chemical potentials
The chemical potential corresponding to i-class particles
is
oF

o 1)

Mi=

TV.N;

The substitution of (18) and (21) and the use of relation
(A13) lead to the following expression of u; in terms of
potentials w;;,

INy,
JIN;

1

(22)

M= E Mim .
Im TV.N,;

In fluids with low enough density, it is expected that the
splitting up of the N; populations into subgroups N;; [Eq. (1)]
be determined by the mole fractions x;=N,/N of species
present in the gas. This means that the population of particles
i having as closest neighbors the class [ particles is propor-
tional to the total population of i particles and to the abun-
dance of [-class particles,

NiN;
Ni =_=XIN,'. (23)
N

We can also say that the probability of a particle had an /
class as the closest neighbor is given simply by the abun-
dance of [ species. In this case (22) becomes

i = 2 (i + )X = 2% X (24)
1 Im

It is easy to show that if w; is given by the sum of two terms
fi+g i.e., one term that depends on the class i and the other
on [, it will be u;=f;+g;. This is what happens in a mixture
of ideal gases, as it is shown in what follows. Let us note that
introducing (14) into (3) leads to the useful relation

Ny =N;"N.ZePr, (25)

where
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v
Zy= f exp[- B(w + €, + €)]dv. (26)
0

On the one hand, for noninteracting gases (hereafter identi-
fied with the superscript *), we have

Zy=(By) ' =n", (27)

which is obtained from (4) and the estimation is done for the
thermodynamic limit (N,V)—c with n=N/V=constant.
Therefore, for a mixing of gases it becomes

. NP
Mi,:len( V’ ) (28)
which through Eq. (24) yields the following exact result:
w =kT 1n(N—)‘D> (29)
! Vv
On the other hand, for interacting fluids, relation (26) gives
Zy=(By) " que "4, (30)
with
0

where x=B7yv. In general, if interactions in the gases are
fairly low, factors (31) will be g;;= 1. In fact, g;— 1 if €,
—0. Using the condition (23) one obtains

i ,37> €
Bt 0l 2 ) 4 5L Zing,, 32
kT l’l( n + kT ngqg; ( )
it ,37) &
B2+ E _mo., 33
kT n( n * kT no; (33)

in which
InQ;=2 Xz(ln(ql'lf]u) -2 X, 1n qim)' (34)
1 m

The excess chemical potentials u'= ,ui,—,u;kl and ui"=pu,
—,u,;k are formed by three contributions with specific charac-
teristics. The first right-hand term of Egs. (32) and (33) rep-
resents the deviation of the division of space among particles
with respect to that in a perfect gas, i.e., By n. This effect
is the same for all chemical potentials. The second right-hand
term in (32) and (33) gives the contribution due to the po-
tential energy acquired on average by an i-class particle due
to its interaction with all the remaining particles in the gas.
The third term corresponds to interactions that affect the dis-
tribution of individual spaces v, as can be seen from the
definition of ¢g;; in (31). This last contribution can be signifi-
cant even for interactions that do not carry energy to the gas,
as it is for infinitely strong repulsive forces (see Sec. V).

By virtue of Eq. (33), we can obtain a similar expression
to (25) for the total population of a given class

N;=N;"NZ P, (35)

where
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Zi=(By)"' Q. (36)

V. HARD PARTICLES

A mixture of hard spheres in D dimensions is character-
ized by interaction potentials described by

m’
Ujpy, j(w) = 0,
with aij:ZDa,-j, where o;; is the volume of a D-dimensional
sphere with diameter (d;+d;)/2, being d; and d; the respec-
tive diameters of particles of classes i and j. The interaction
does not depend neither on the /-class neighbor nor on the
available volume. To identify the available volume v of a
given particle we adopt as reference the results found in Ref.
[13] for single-component fluids. We adopt then as ansatz
that for low particle densities the available volume is the
ideal volume v" (i.e., v of noninteracting particles, see Sec. I)
reduced by an amount a; that depends on the repulsion be-
tween the particle and its neighbor with the shortest contact
distance (hereafter nscd):

w= ajj, (37)

w > a,-j,

v=v"—a,. (38)

Other interpretations than (38) are also possible. However,
the results that are obtained in the present section strongly
support the choice given in (38). As a consequence of this
interpretation, a particle of class j# [ with a;;<<a; can have
its center at a shorter distance from the center of particle i
than the particle /.

The identification of a volume per particle enables us to
specify the form of the distribution function of pairs (here-
after pdf) g, (w) for low densities. Notice that g;, (w)dw
gives the probability of finding a particle of class j located
between the surfaces of spheres w and w+dw both centered
in a particle ilv. According to the results obtained in Ref.
[13] for single-component fluids, we deduce that the pdf
with j=/ has a contribution due to the nscd given by a Dirac
delta function &(x) evaluated on the nscd center and divided
by the density of /-class particles. In fluids of low density, the
contribution to the pdf due to the remaining particles j can
be approximated with a Heaviside step function O(x)
[O@(x)=1 for x=0 and O(x)=0 when x<0], which implies
that the position of these particles is uncorrelated with that of
the reference ilv one. Thus,

il * *
gilu,j(w) = ;Lb‘(w -v-a;)) +O(w-v—-a;+a;- a;).
I

(39)

The terms in the argument of the step function warrant that
the nscd is a I-class particle. The Kronecker delta symbol &
ensures that the contribution due to nscd is taken into ac-
count only if j=I. Introducing Egs. (37) and (39) into Egq.
(11) we obtain
0, v="by,
b= { (40)

0, v> bil’

and
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i j+1 =0, (41)
where
by=a;- ai*l' (42)
It follows then that
€l = {00, V=t (43)
0, v > by,

while =0V . In the thermodynamic limit, Eqs. (3) and (4)

yield
biln (nﬂ)\? n >:|
1 =kT| +1 , 44
Hit {l—bn . n; 1-—bn (“44)

1

i, = (v = by)n By exp[- By(v —by)], (45)

n

=—, 46
1-bn (46)

By
where we have written

bn=2) byny. (47)
il

As it is expected, the gas does not store interaction energy,
which implies that U;,,=0 and thus y=P. From the compari-
son of Eq. (46) with the corresponding virial expansion for
mixtures of hard spheres [16], enables us to make the fol-
lowing identifications:

by=2""0,, (48)

ny=xmn;. (49)

Relation (48) is nothing but an extension of previous results
found for single-component fluids, while (49) confirms the
relation already established in Eq. (23). Since ;=07 the
quantities a;, by, and a; are symmetric in the indices il. In
particular, a,=a,=2""'g;, so that the volume of a hard
sphere is reduced with respect to the ideal value v* by an
amount that does not depend on which of both, the reference
or the nscd particle, is the largest. Nevertheless, as it is ex-
pected, a big nscd reduces more the space v of a given par-
ticle than a small nscd.

On the other hand, from Egs. (24) and (44) we obtain the
excess chemical potential for hard spheres of species i that is
given by

22 bilnl -bn

M !
=—In(1-» , 50
gr = A =bn+ (50)

which in particular for D=1 reduces to

] =—1n<1—20'llnl>+L. (51)
kT l 1—210'”711

Equation (46) is exact for D=1 [23,24] and it gives only an
approximate solution for D> 1. However, it gives the correct
asymptotic behavior for n— 0. This is shown explicitly in
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FIG. 1. (Color online) The compressibility Z factor calculated
with Eq. (46) (dashed lines) and Percus-Yevick results [25] (dotted
lines) as a function of the packing fraction 7 for 3D binary mixtures
with x;=0.5 and d,/d,=0.01, 0.4, and 1.0 (from bottom to top).

Fig. 1, where the compressibility factor Z=P/(nkT) is calcu-
lated with Eq. (46) and compared with the Percus-Yevick
(PY) approximation [25] for a three-dimensional binary mix-
ture, as a function of the packing fraction n=2Xn;0;; which
gives the fraction of the total volume occupied by the hard
particles. Since we compare our results with those of the PY
theory, one of the most successful theoretical approaches in
studies of fluids, let us recall that it is based on an approxi-
mate integral equation of the radial distribution function
from which the thermodynamics of hard-body systems fol-
lows as a by product. In few cases, it can be solved analyti-
cally, e.g., mixture of hard spheres, and the solutions ob-
tained are very close to those issued from computer
simulation [22].

Likewise, Eq. (51) is exact for hard rods [27]. Equation
(50) provides the correct low-density behavior of the excess
chemical potential for D> 1. The latter is illustrated in Figs.
2 and 3, which show the comparisons of our results obtained
for D=3 with those issued from the scale particle theory

10
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e’ T
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i
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~~.

o K=

o

FIG. 2. (Color online) Excess chemical potentials of a diluted
solution (here species 2) calculated with Eq. (50) (dashed lines) and
those from the scale particle theory [26] (dotted lines) as a function
of the packing fraction 7 for 3D binary mixtures with x,=107> and
d,/d;=0.5, 1.0, 2.0, 3.0, and 5.0 (from bottom to top).

X
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Log,, (d,/d,)

FIG. 3. Excess chemical potentials obtained with Eq. (50) (sym-
bols) and Percus-Yevick theory results [27] (lines) as a function of
the diameter ratio d,/d; for 3D binary mixtures with 7=0.02 and

,=0.05, 0.1, and 0.5.

[26], which is correct for a solute infinitely diluted and with
the PY solutions found by Lebowitz [25], respectively. It is
important to note that all expressions derived for mixtures of
hard spheres are exact up to the second term in the virial
expansion. Finally, we can conclude that the achievement of
agreements shown in Figs. 1-3 confirm the appropriateness
of the closure relations (23) and (38) adopted, where
a;= 2P-1g,. Since our work aims at giving a detailed repre-
sentation of complex gases at low densities (7<<0.01), the
results we have obtained can be considered as very satisfac-

tory.

A. Pair-distribution functions

From detailed g, ; functions it is possible to calculate the
averaged pdf with the occupational numbers n;;, (see Ref.
[13]). For example, the probability of finding a j particle
between the spherical surfaces w and w+dw centered in a i
particle, regardless of its available volume, whose nscd is an
| particle, defines a conditional pair distribution function

cpdf which is given by

1 oo
gil,j(w) = _f
niJo

The traditional g;; can be computed from the summation over
all species of cpdf appropriately weighted by the probability

of finding a nlcd of a given class,

gij(w) = 2 xlgil,j(w)~
1

i j(@)n,dv. (52)

(53)

For mixtures of hard spheres, Egs. (52) and (53) give,

respectively,

041120-6



THERMOSTATISTICAL DESCRIPTION OF GAS...

6 T I T T LI I T 1 17T | a4 K ¥ I L T
a [ 7=0.1 1
o - "
e 1% x,=0.7
N -
24l E \ 8122 d,/d,=0.5
o i
o m
= Lo
3 1
a |
B i
w2
S
= i
= Lo
& '

o 8121
vl WA e by
1.5 2 2.5 3 3.5
r/R,

FIG. 4. (Color online) Conditional pdf from Eq. (54) as a func-
tion of the normalized radial distance r/R; (R;=d,/2 is the radius
of a particle of species 1) for a 3D binary mixture with 7=0.1, x,
=0.7, and d,/d,=0.5.

gitj(®) = O(w - aij)[l + (‘Sjlﬁ - 1)6_’37(‘"_“’7)} , (54)

n
bn n(w—aig)
gij(w)=(“"“zi{”l_bnexl’(_ 1-bn )]

(55)

Equations (54) and (55) are approximations suitable for low
densities, because the function g;, ; in Eq. (39) takes into
account explicitly only the correlations between the refer-
ence particle and its nscd. However, they contain the most
important deviations with respect to the solutions for perfect
gases.

To our knowledge, this is the first time that the cpdf are
suggested and calculated for mixtures of hard spheres. Figure
4 shows some cpdf for a binary mixture with 7=0.1 and
x;=0.7. In the chosen example, particles of class 1 have a
diameter twice as large as those of class 2. Functions g; ;
become zero for distances r between particles i and j shorter
than the contact distances, as it happens for the conventional
pdf gi;- Nevertheless, contrary to functions g;;, the behavior
of cpdf at moderate distances can be strongly affected due to
the information on the nscd class carried by the reference
particle. Thus, up to the present level of approximations, the
function gy,, grows above 1 for small values of r
(r>1.5R,, r—1.5R,, where R, is the radius of class 1
spheres). This is due to the fact that the probability of finding
a particle of class 2 at a distance r= 1.5R; from another of
class 1 augments if it happens that the latter has a nscd of
class 2. This augmentation concerns the nonconditioned
probability of finding a class 2 particle and so, it is higher the
lower is the abundance of the considered species. Con-
versely, for the same range of distances, the function gy,
decreases because the possibility of nscd be of class 2 is
removed.

The results corresponding to a mixture of ideal gases are
contained naturally in the expressions (54) and (55). In this
case, the results are exact. For permeable spheres, i.e., a;
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pair distribution function

r Vn,

FIG. 5. (Color online) Conditional pdf computed with Eq. (54)
(full lines) as a function of the dimensionless radial distance r\e‘“‘nz
(in units of the mean distance between particles of species 2) for a
2D binary mixture of perfectly permeable particles at x;=0.7. The
results obtained from numerical simulations with 10° Poissonian
points are shown for comparison (dotted lines).

:bij:afj:O, the expected correct result g?}:lVi,j is ob-
tained. Moreover,

1 _ e—nw

1+ (xl_1 —1)e™®

G#D,
(j=1).

Figure 5 shows some cpdf corresponding to a binary bidi-
mensional mixture predicted by Eq. (56) (full lines), which
are in excellent agreement with the results obtained from
numerical simulations (dotted lines) based on two sets of
uncorrelated points created by a random number generator.

giz,j(w) = (56)

B. van der Waals mixture

The van der Waals model for a mixture can be obtained
by adding to the repulsive forces [Eq. (37)] a generalized
Kac type attraction potential,

OO’ w= aij3
uilv,j(w) = (57)

-7 J(y ), w > a,

where €;=0 are constants and J is a function that satisfy the

condition [(J(w)dw=1. In the limit " —0 it becomes

bua= Ve (58)
ilv,l — — € > b,'[,
and
Diny j#1=— € (59)
so that
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o, v= bil’

Ei = 1 60

b= 52 €1, v >by. (60)
J

The attracting forces modify the chemical potentials and the
total interaction energy of the gas, so that it results in

nbil n,«l)\D n
wi=kT +1In - em;  (61)

1-nb n; 1-nb ;
and
Uint 6’72
==, 62
v 5 (62)
where
b=2xiij,-j (63)
ij
and
€= E xinEij. (64)
ij

Nevertheless, Egs. (45) and (46) remain unchanged as it hap-
pens for single-component fluids [13]. We then see that using
Eq. (20) the known relation P=(nkT)/(1-nb)—en*/2 is re-
covered. Relations (63) and (64) are often used as mixing
rules which relate the properties of the pure component mod-
els to those of mixtures in extended models. They are con-
sidered adequate for mixtures of monopolar compounds
[28-30] and vapor-liquid phenomena [31].

C. Attractive hard spheres

A simple model of hard spheres having short-range attrac-
tive forces, as opposite to the long-range van der Waals
model, is obtained by adding a square-well potential at the
edge of a repulsive nucleus,

0o, w= aij,
iy (@) = = €, a;<o<a;+é, (65)
0, w = aij + f,

where £ is a characteristic attractive volume surrounding the
a;; volume of the repulsive nucleus. For simplicity we adopt
a value of ¢ independent of the considered pair of particles.
This potential is used often to model the interactions among
colloidal particles and protein molecules [32-34], which
commonly have attractive forces in the very nearest vicinity
of their surfaces (§<a;;). With Eq. (65), Eqs. (11) and (15)
lead to

OO’ vail?
S
_ Yij
Dt = _Eij<n +by+&-v),
I

0, v=b;+§

by<v<by+§,

(66)

and
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oo, v= bil’
€l
€y = _E_Bi(bil"'g_v)’ by<v<by+§,
0, v=b;+E,
(67)
where
B=X Y. (68)

The state equations that result from the particle and volume
conservation relations (3) and (4) are

i\
it = kT{ﬁ?’biH‘ ln(ﬁynl : )} + €, (69)
nXj
Y
By=2ni (70)
il i
where we have
_ o Bly+b)¢
X, =ePry ’Byeﬁ(fﬂ/z’rBif)(le—) i (71)
B(y+B)

Yi=[1+Byby+&le P+ ( 7
y+B

2
) eB(Ei1/2+BI~§){1 +B(,y

+B)by—[1+ By+B)(by+ §]e P04, (72)
Besides, the v-occupation number distribution is given by
Ry = ”ﬂ&e_ﬁ [ro-bi*ei], (73)
Xiy
We can also obtain an analytic expression for the interaction
energy,

Uin _ 5 B pieovne [_ (2 +Bi§)<ﬂ>
Vi X 2 Bly+By)
( 1=[1+B(y+ Bi)é]e‘ﬂ(“f)f)]
" [B(y+BT '
It can be interesting to have limiting expressions of these

equations for small enough values of & Keeping only the
zero and first order terms, we derive

Xy=1+ Byéeli” ~1), (75)

(74)

Yy=1+ Byby+ (By)*éby(ePi* - 1). (76)

If also the potential wells are the same, €;,=€ V(i,[), the state
equation (70) reduces to a quadratic relation in 87,

(BYPE(e 2= 1)+ By=—"". (77)
1 -bn
where b=2,x;x;b;. When the thickness £ or the depth € of
the potential well tend to zero, the state equation (77) recov-
ers the form corresponding to a mixture of pure hard spheres.
The same result is obtained for high enough temperatures,
kT> €.
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FIG. 6. Factor Byn~! as a function of the packing fraction for
3D binary mixtures of spheres with x;=0.7 and d,/d;=0.5. Dotted
line, perfectly permeable spheres; full line, hard spheres and van der
Waals fluid; dashed lines, square-well fluid with &/0=0.2 (o is the
mean volume of a particle) and reduced temperatures k7/e=0.12,
0.5. The result for pure hard spheres is obtained for k7/e— oe.

D. Space distributions

The thermodynamic variable 7y has the function of adjust-
ing the allotment of space among particles in order to satisfy
the mathematical requirements of space filling established by
(4). In mixtures of noninteracting particles the occupation
number distributions n;;,, depends on the individual volume
per particle v through the exponential exp(—Byv). In this
case, the scale factor B7y is equivalent to the total number
density of particles n. Obviously, the allotment of space is
not homogeneous. Most particles have smaller available vol-
umes than the average volume per particle, n~!, while the
statistical partition of big volumes is low.

The particle interactions change the assignment of the
volume v for each particle and thus they change the occupa-
tion numbers n;,, as compared to those for ideal gases.
Therefore, the interactions also affect the y values. In Fig. 6
we have plotted Syn~! as a function of the packing fraction
5 for perfectly permeable spheres (dotted line), pure hard
spheres (full line), and hard spheres with square-well poten-
tials (dashed lines). Notice that Byn~' is a measure of 7y in
units of perfect gas values. Figures 7 and 8 show occupation
number distributions n;;, for binary mixtures of pure and
attractive hard spheres, based on Egs. (45) and (73), respec-
tively. The lower cutoff value for each curve corresponds to
the smallest volume v permitted by the repulsion between a
hard sphere and its nscd, as given by Eq. (38). The square-
well potential yields the peaks observed in Fig. 8. If we make
abstraction of the normalization constants—area under the
curves representing the n; population—the peak height of
curves n;;, vs v in Figs. 7 and 8 depend on the abundance of
the corresponding pairs il. In the frame of models of mix-
tures considered here the distributions n;,, and n,;, are co-
incident.

In a hard sphere mixture, the repulsions among the par-
ticles produce an increase of the mean volume per particle.
As a consequence, at given temperature and density the
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0.8

0.6

02 -

v/o,,

FIG. 7. Dimensionless double densities n;,,/n” as a function of
the available volume per particle (in units of volume o; of a par-
ticle of class i=1) for a 3D binary mixture of hard spheres with
7=0.1, x,=0.7, and d,/d;=0.5 (solid lines). Results corresponding
to fully penetrable spheres are shown by comparison (dotted lines).

value of y must increase (full line in Fig. 6) to warrant the
occupation distributions n;;, be correctly displaced towards
higher values of v (full lines in Fig. 7). On the contrary, the
attractive forces of finite range in a square-well fluid, in-
crease the population of particles with small individual vol-
umes (full lines in Fig. 8) and reduce the values of y as
compared to those of pure hard spheres (dashed lines in Fig.
6). These changes depend on the temperature value. Low
temperatures favor the particle adherence and thus increase
the occupation number of low available volume.

The long-range interactions of Kac type analyzed in Sec.
V B are such that the magnitude of the interaction of each
particle with the remaining medium does not depend on the
nearness of its neighbors. Hence, the attractive forces have
no incidence on the space occupation distribution n;;, neither
on v, both being equivalent to those in a mixture of pure hard
spheres and hence independent of the temperature.

2 _ I I - | T T L T 4
I KT/e=05 1

- T

1.5 C (=0 é/ _

[ =0 -

N _ ]
‘: _ ]
3L —
g : :
. |
[(22) \

0 ] -

0 | 10

v/0

FIG. 8. Dimensionless double densities ;,/n” as a function of
the available volume per particle (in units of volume o, of a par-
ticle of class i=1) for a 3D binary mixture of attractive hard spheres
with 7=0.1, x,=0.7, d,/d,=0.5, &/ 0=0.2, and kT/€=0.5 (solid
lines). Results for pure hard spheres are shown by comparison (dot-
ted lines).
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It is useful to point out that, for ideal and pure hard-sphere
mixtures, the quantity S8yn~! coincides with the compress-
ibility factor Z=P/nkT since these gases cannot store inter-
action energy and, therefore, 7y is equivalent to the gas pres-
sure P. It is not true for the van der Waals and square-well
models, because they have a non-negligible interaction en-
ergy, so that y and P differ as described by relation (20).

VI. CHEMICAL EQUILIBRIUM

In this section we extend the theory somewhat to include
cases where chemical reactions can occur. In this case, the
total free energy contains a contribution given by the sum-
mation of all particle internal energies,

%
E=2NE=2 | NyEdv, (78)
i i Jo

where E; is the internal energy of a particle i and the refer-
ence zero energy is considered the same for all species. If the
internal energies E; are degenerate with multiplicity w;, then
W; in Eq. (8) becomes

WidU/v)Nil”dU

_ (widv/ V) it
W= L= 79)

v
The configuration free energy takes thus the form
v
N; N,V
Fop=> | —2 1n<L)dv. (80)
i Jo B WiV

The results obtained in the preceding sections given by (14),
(30), and (36) can be generalized now as

N;
Ny, = N exp[- B(yw — wy + €, + €+ Ep)],  (81)

l

Zy=(BY) " wigge Pt (82)
and
Z;=(By) ' w,Qie Pt (83)
Now, let us consider the reaction
aA+bB+ -+ —cCH+ -+, (84)

that involves the species i=A,B,C,... and the stoichiometric
factors a,b,c,.... The equilibrium condition of the reaction
is

dF=E( o

)dN,: > wdN;=0,  (85)
i \ INilryn,,, i

which is subject to the conditions

dN, dN, dN,
ZA_ZB_ 2 (86)
a b c
The criterion for the equilibrium is therefore
apg+bug+ - =cuc+ -, (87)

which through Eq. (35) leads to the relationship among the
species abundances,
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(NM?)Q<NB_)\II?)17... = (NC_)‘lC))C (88)
NZ, NZg NZc ’

that gives the generalized form of the mass-action law.

The results given in this section bring useful tools to study
gaseous mixtures, including their chemical equilibrium.
Equation (81) sums up the main feats of the present formu-
lation. It enables to describe populations in reacting gases at
a level of details attained never before, i.e., to evaluate popu-
lations of atoms and molecules in a consistent thermody-
namic way, not only by obtaining the density of each species,
but giving as well its populations per groups according to the
available volume of each particle, where this variable is
linked directly with the degree of perturbations experienced
by the atoms due to the presence of neighbors. In the pre-
ceding work [13] we have foreseen some results that could
be obtained with the present theory. For example, it is pos-
sible to show that atoms of a given species in a gas do not
have all the same effective ionization potential (electronic
energy relative to the energy threshold corresponding to free
electrons), but can they have a variety of values according to
the available volume of particles. The application of the
present theory to mixtures of atomic particles with more re-
alistic interaction potentials than considered here will be pre-
sented in a forthcoming paper.

VII. CONCLUSIONS

We have developed a mathematical framework in terms of
a Helmholtz free-energy model which aims at describing
equilibrium properties of D-dimensional multicomponent
fluids. This theory is an extension of a former model devoted
to one-component fluids and combines free-energy minimi-
zation methods with space partitions based on the available
volume v to a particle and the occupation number distribu-
tions of this variable. Thus we obtain a unified formalism
that treats thermodynamics and structure of complex fluids
simultaneously.

The theory is presently developed for the case of dilute
fluids, where interparticle interactions are evaluated from
pair potentials. Two closure relations (23) and (38) are re-
quired to obtain a closed formalism. The former is associated
to the particle number conservation (3) and provides the
probability that a particle had a specific species as the closest
neighbor. The second closure relation (38) specifies the
available-volume variable and, therefore, is linked to the fill-
ing space condition (4). Consequently, unconventional ther-
modynamic variables were derived by introducing space par-
titions in the thermostatistical analysis of fluids. They are
Lagrange’s multipliers related to the specific particle number
and volume conservations, which describe thus chemical po-
tentials and the pressure, respectively. In addition, we have
obtained general expressions for the excess chemical poten-
tials and chemical equilibrium conditions of nonideal fluids,
as well as several pair distribution functions.

The theory provides a straightforward way to calculate
thermodynamic quantities and structure properties of gas
mixtures. As illustrative examples, we have considered sev-
eral hard sphere systems for which simple analytical expres-
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sions were derived. The equations of state obtained for pure
hard-sphere systems are in good agreement with the scaled-
particle and Percus-Yevick solutions valid for low densities.
We reckon that this agreement confirms a posteriori the va-
lidity of the several approaches adopted. Besides, well-
known solutions for van der Waals mixtures were recovered
easily by using generalized Kac potentials. We also have
derived closed analytical forms for thermodynamic quanti-
ties of square-well mixture fluids. These evaluations consti-
tute a reference for future studies of short ranged attractive
systems. The influence of repulsive and attractive forces on
the space partition among particles was analyzed. The results
thus obtained express a close relationship between statistical
geometry and statistical mechanics.

The formalism introduced in the present work provides a
useful tool to investigate the structure and the effective in-
teractions in chemical complex fluids. It is particularly well
suited to study some astrophysical gases where detailed de-
scriptions of species and interactions are required. This oc-
curs, in particular, in atmospheres and circumstellar enve-
lopes, where the density can be hardly higher than some 7
=0.01, so that the approximations for low densities given
here can be used safely. We consider that the present theory
has many other applications in applied problems of current
interest, such as studies of equilibrium properties of colloidal
and protein solutions.

Among the most important results obtained in this work,
we can quote the following:

(i) A functional (or series of functionals for mixing) con-
tains the entire thermodynamical information of the system
and leads to a classification of particles according to their
distance to the closest neighbor through the assignment of a
given volume available to each particle. So, it is thus pos-
sible to distinguish the atoms according to the different de-
grees of perturbations carried by their neighbors. To our
knowledge, there is no other model able to make this distinc-
tion up to now.

(i1) The current formalism is able to answer to the follow-
ing inquiries:

(a) What is the probability of finding a particle of class
j at a distance r from another particle of species i whose
closest neighbor is of class k, knowing that r, i, j, and k are
arbitrary?

(b) Idem as before, but for a neighbor k situated at a
given (arbitrary) distance from the particle of class i?

(iii) The chemical equilibrium of a fluid and the classifi-
cation of particles according to the distance to the respective
closest neighbor, are done simultaneously and self-
consistently with the laws of thermodynamics.

(iv) As far as we know, it is the first time that a theory is
able to provide thermodynamical variables associated with
the distribution of the space between the particles of different
chemical species directly. The variables are related to the
conventional thermodynamical variables explicitly, such as
pressure, chemical potential, etc.

The description level attained by our formalism overrides
whatever known preexisting model and constitutes an unpar-
alleled tool to represent chemical mixing at low densities. It
also provides conceptual elements on the connection be-
tween statistical mechanics and spatial statistics.
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APPENDIX: THERMODYNAMIC IDENTITIES

In what follows we derive three thermodynamic identities
which enable us to derive relations (19), (20), and (22). The
starting point is the equation that gives the total particle
population in terms of the occupation number Nj,,,,

(A1)

|4
N=2, f Njpdv.
jm J0

If in (A1) we replace N, by its expression given by (14)
and derivate it with respect to a given population N; by
keeping constant the temperature, volume and the remaining
populations (N,+;), we shall obtain

éu Je;, Jde
E J ]mv( + c+ _L)dv
jm (9N,l aNtl &Nll é’Nll

d v €y OE;
VEN]m_'U’L Ef ijv(_u_'__L)dv:()_
Nit jm Ny Tim Jo Ny INy

(A2)

The second line in (A2) was obtained using relations (3) and
(4). We also note that

jm f

Lm gy = 3 f N,mv—&d v=¢, (A3)

va
aNtl jm
and
&e U,
> f N,m,,—f—du—E L= _e. (A4
jm &Nll Jj &Nll &Nil
Equations (A2)—(A4) lead to the identity
dJ m an
S N, i PP (AS)
3sz m Ny Ny

Then, Eq. (19) can be obtained easily from relations (18) and
(A5). In a similar way, the partial derivative of Eq. (A1) with
respect to the volume produces

1%
J m de JE;
Ef Nj,nv<v—y——LM”l+—Lmv+—l>dv
m Jo v 9V

v v
U,
—V— Eij a—v‘+c=o, (A6)

with
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14
&é'mv

c=> f Ny dy. (A7)

In Eq. (A6) we have ignored the terms with Nj,,-y), since

they become zero at the thermodynamic limit. According to
Eq. (15), we have

afjmv - E@ + 2 Ni&V(ﬁ{mv,i ) (AS)
v \% ; 2V

L

In general dy¢;,,, ;=0, so that

1 v Uim
C==—2 | Njm€mdv=——2. (A9)
ij 0o

Hence, from relation (A6) we obtain the following identity:

0 i, U, Ui,

v Sy, o, T Zin_g - (a10)
v o mav T oav v
Knowing that P=—dF/dV, relation (20) is obtained straight-

forwardly from Egs. (18) and (A10).
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The procedure followed to obtain relation (A5) can also
be used to obtain the partial derivative of Eq. (A1) with
respect to the population of class i particles (N;) by consid-
ering constant the temperature, volume and the populations
of the remaining species (N,.;). We then use

[?Uint
—— =€+, Ndye; All
(?Ni i ; JYN;Sj ( )
and
JE; -
gmv — ¢ZITIU,I . (A]Z)
ON; 2V
The third identity that we can obtain is
d i AU,
1% 7Y _ E Nim I jm Z Zint =0.
INiIn,, m INi In,,  ONiln,,
(A13)

Equation (A13) enables us to find an expression for the
chemical potential u; in terms of the thermodynamic poten-

tials u;,, [Eq. (22)].
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