348 research outputs found
The NuSTAR Extragalactic Surveys: X-Ray Spectroscopic Analysis of the Bright Hard-band Selected Sample
We discuss the spectral analysis of a sample of 63 active galactic nuclei (AGN) detected above a limiting flux of S(8-24 keV) = 7 x 10^(-14) erg s^(-1) cm^(-2 in the multi-tiered NuSTAR extragalactic survey program. The sources span a redshift range z = 0-2.1 (median (z) = 0.58). The spectral analysis is performed over the broad 0.5–24 keV energy range, combining NuSTAR with Chandra and/or XMM-Newton data and employing empirical and physically motivated models. This constitutes the largest sample of AGN selected at 〉 10 keV to be homogeneously spectrally analyzed at these flux levels. We study the distribution of spectral parameters such as photon index, column density (N_H), reflection parameter (R), and 10–40 keV luminosity (L_X). Heavily obscured (log[N_H/cm^(-2] ≥ 23) and Compton-thick (CT; log[N_H/cm^(-2)] ≥ 24) AGN constitute ~25% (15–17 sources) and ~2–3% (1–2 sources) of the sample, respectively. The observed N_H distribution agrees fairly well with predictions of cosmic X-ray background population-synthesis models (CXBPSM). We estimate the intrinsic fraction of AGN as a function of N_H, accounting for the bias against obscured AGN in a flux-selected sample. The fraction of CT AGN relative to log[N_H/cm^(-2] = 20-24 AGN is poorly constrained, formally in the range 2–56% (90% upper limit of 66%). We derived a fraction (f_(abs)) of obscured AGN (log[N_H/cm^(-2]= 22-24) as a function of L_X in agreement with CXBPSM and previous z 〈 1 X-ray determinations. Furthermore, f_(abs) at z = 0.1-0.5 and log(L_x/erg s^(-1) ≈ 43.6-44.3 agrees with observational measurements/trends obtained over larger redshift intervals. We report a significant anti-correlation of R with L_X (confirmed by our companion paper on stacked spectra) with considerable scatter around the median R values
Constraining the thermal history of the Warm-Hot Intergalactic Medium
We have identified a large-scale structure traced by galaxies at z=0.8,
within the Lockman Hole, by means of multi-object spectroscopic observations.
By using deep XMM images we have investigated the soft X-ray emission from the
Warm-Hot Intergalactic Medium (WHIM) expected to be associated with this
large-scale structure and we set a tight upper limit to its flux in the very
soft 0.2-0.4 keV band. The non-detection requires the WHIM at these redshifts
to be cooler than 0.1 keV. Combined with the WHIM emission detections at lower
redshift, our result indicates that the WHIM temperature is rapidly decreasing
with redshift, as expected in popular cosmological models.Comment: 10 pages, 5 figures, 1 appendix. A&A accepte
A galaxy overdensity at z=0.401 associated with an X-ray emitting structure of Warm-Hot Intergalactic Medium
We present the results of spectroscopic observations of galaxies associated
with the diffuse X-ray emitting structure discovered by Zappacosta et al.
(2002). After measuring the redshifts of 161 galaxies, we confirm an
overdensity of galaxies with projected dimensions of at least 2 Mpc, determine
its spectroscopic redshift in z=0.401+/-0.002, and show that it is spatially
coincident with the diffuse X-ray emission. This confirms the original claim
that this X-ray emission has an extragalactic nature and is due to the Warm-Hot
Intergalactic Medium (WHIM). We used this value of the redshift to compute the
temperature of the emitting gas. The resulting value depends on the metallicity
that is assumed for the IGM, and is constrained to be between 0.3 and 0.6 keV
for metallicities between 0.05 and 0.3 solar, in good agreement with the
expectations from the WHIM.Comment: 9 pages, A&A, in press, minor language change
Studying the WHIM Content of the Galaxy Large-Scale Structures along the Line of Sight to H 2356-309
We make use of a 500ks Chandra HRC-S/LETG spectrum of the blazar H2356-309,
combined with a lower S/N spectrum of the same target, to search for the
presence of warm-hot absorbing gas associated with two Large-Scale Structures
(LSSs) crossed by this sightline at z=0.062 (the Pisces-Cetus Supercluster,
PCS) and at z=0.128 ("Farther Sculptor Wall", FSW). No statistically
significant (>=3sigma) individual absorption is detected from any of the strong
He- or H-like transitions of C, O and Ne at the redshifts of the structures.
However we are still able to constrain the physical and geometrical parameters
of the associated putative absorbing gas, by performing joint spectral fit of
marginal detections and upper limits of the strongest expected lines with our
self-consistent hybrid ionization WHIM spectral model. At the redshift of the
PCS we identify a warm phase with logT=5.35_-0.13^+0.07 K and log N_H
=19.1+/-0.2 cm^-2 possibly coexisting with a hotter and less significant phase
with logT=6.9^+0.1_-0.8 K and log N_H=20.1^+0.3_-1.7 cm^-2 (1sigma errors). For
the FSW we estimate logT=6.6_-0.2^+0.1 K and log N_H=19.8_-0.8^+0.4 cm^-2. Our
constraints allow us to estimate the cumulative number density per unit
redshifts of OVII WHIM absorbers. We also estimate the cosmological mass
density obtaining Omega_b(WHIM)=(0.021^+0.031_-0.018) (Z/Z_sun)^-1, consistent
with the mass density of the intergalactic 'missing baryons' for high
metallicities.Comment: 29 pages, 8 figures, 4 tables. Accepted for publication in Ap
An X-ray WHIM metal absorber from a Mpc-scale empty region of space
We report a detection of an absorption line at ~44.8 {\AA} in a > 500 ks
Chandra HRC-S/LETG X-ray grating spectrum of the blazar H 2356-309. This line
can be identified as intervening CV-K{\alpha} absorption, at z\approx0.112,
produced by a warm (log T = 5.1 K) intergalactic absorber. The feature is
significant at a 2.9{\sigma} level (accounting for the number of independent
redshift trials). We estimate an equivalent hydrogen column density of log
N_H=19.05 (Z/Zsun)^-1 cm^-2. Unlike other previously reported FUV/X-ray metal
detections of warm-hot intergalactic medium (WHIM), this CV absorber lies in a
region with locally low galaxy density, at ~2.2 Mpc from the closest galaxy at
that redshift, and therefore is unlikely to be associated with an extended
galactic halo. We instead tentatively identify this absorber with an
intervening Warm-Hot Intergalactic Medium filament possibly permeating a
large-scale, 30 Mpc extended, structure of galaxies whose redshift centroid,
within a cylinder of 7.5 Mpc radius centered on the line of sight to H
2356-309, is marginally consistent (at a 1.8{\sigma} level) with the redshift
of the absorber.Comment: ApJ accepted, 6 pages, 3 figure
Speed limits for radiation-driven SMBH winds
Context. Ultra-fast outflows (UFOs) have become an established feature in analyses of the X-ray spectra of active galactic nuclei (AGN). According to the standard picture, they are launched at accretion disc scales with relativistic velocities, up to 0.3-0.4 times the speed of light. Their high kinetic power is enough to induce an efficient feedback on a galactic scale, possibly contributing to the co-evolution between the central supermassive black hole (SMBH) and the host galaxy. It is, therefore, of paramount importance to gain a full understanding of UFO physics and, in particular, of the forces driving their acceleration and the relation to the accretion flow from which they originate.Aims. In this paper, we investigate the impact of special relativity effects on the radiative pressure exerted onto the outflow. The radiation received by the wind decreases for increasing outflow velocity, v, implying that the standard Eddington limit argument has to be corrected according to v. Due to the limited ability of the radiation to counteract the black hole gravitational attraction, we expect to find lower typical velocities with respect to the non-relativistic scenario.Methods. We integrated the relativistic-corrected outflow equation of motion for a realistic set of starting conditions. We concentrated on a range of ionisations, column densities, and launching radii consistent with those typically estimated for UFOs. We explore a one-dimensional, spherical geometry and a three-dimensional setting with a rotating, thin accretion disc.Results. We find that the inclusion of special relativity effects leads to sizeable differences in the wind dynamics and that v is reduced up to 50% with respect to the non-relativistic treatment. We compare our results with a sample of UFOs from the literature and we find that the relativistic-corrected velocities are systematically lower than the reported ones, indicating the need for an additional mechanism, such as magnetic driving, to explain the highest velocity components. Finally, we note that these conclusions, derived for AGN winds, are generally applicable
The WISSH quasars Project: II. Giant star nurseries in hyper-luminous quasars
Studying the coupling between the energy output produced by the central
quasar and the host galaxy is fundamental to fully understand galaxy evolution.
Quasar feedback is indeed supposed to dramatically affect the galaxy properties
by depositing large amounts of energy and momentum into the ISM. In order to
gain further insights on this process, we study the SEDs of sources at the
brightest end of the quasar luminosity function, for which the feedback
mechanism is supposed to be at its maximum. We model the rest-frame UV-to-FIR
SEDs of 16 WISE-SDSS Selected Hyper-luminous (WISSH) quasars at 1.8 < z < 4.6
disentangling the different emission components and deriving physical
parameters of both the nuclear component and the host galaxy. We also use a
radiative transfer code to account for the contribution of the quasar-related
emission to the FIR fluxes. Most SEDs are well described by a standard
combination of accretion disk+torus and cold dust emission. However, about 30%
of them require an additional emission component in the NIR, with temperatures
peaking at 750K, which indicates the presence of a hotter dust component in
these powerful quasars. We measure extreme values of both AGN bolometric
luminosity (LBOL > 10^47 erg/s) and SFR (up to 2000 Msun/yr). A new relation
between quasar and star-formation luminosity is derived (LSF propto
LQSO^(0.73)) by combining several Herschel-detected quasar samples from z=0 to
4. Future observations will be crucial to measure the molecular gas content in
these systems, probe the impact between quasar-driven outflows and on-going
star-formation, and reveal the presence of merger signatures in their host
galaxies.Comment: 19 pages, 12 figures; Accepted for publication in Astronomy &
Astrophysics on June 13, 201
The NuSTAR Extragalactic Surveys: X-Ray Spectroscopic Analysis of the Bright Hard-band Selected Sample
We discuss the spectral analysis of a sample of 63 active galactic nuclei (AGN) detected above a limiting flux of S(8-24 keV) = 7 x 10^(-14) erg s^(-1) cm^(-2 in the multi-tiered NuSTAR extragalactic survey program. The sources span a redshift range z = 0-2.1 (median (z) = 0.58). The spectral analysis is performed over the broad 0.5–24 keV energy range, combining NuSTAR with Chandra and/or XMM-Newton data and employing empirical and physically motivated models. This constitutes the largest sample of AGN selected at 〉 10 keV to be homogeneously spectrally analyzed at these flux levels. We study the distribution of spectral parameters such as photon index, column density (N_H), reflection parameter (R), and 10–40 keV luminosity (L_X). Heavily obscured (log[N_H/cm^(-2] ≥ 23) and Compton-thick (CT; log[N_H/cm^(-2)] ≥ 24) AGN constitute ~25% (15–17 sources) and ~2–3% (1–2 sources) of the sample, respectively. The observed N_H distribution agrees fairly well with predictions of cosmic X-ray background population-synthesis models (CXBPSM). We estimate the intrinsic fraction of AGN as a function of N_H, accounting for the bias against obscured AGN in a flux-selected sample. The fraction of CT AGN relative to log[N_H/cm^(-2] = 20-24 AGN is poorly constrained, formally in the range 2–56% (90% upper limit of 66%). We derived a fraction (f_(abs)) of obscured AGN (log[N_H/cm^(-2]= 22-24) as a function of L_X in agreement with CXBPSM and previous z 〈 1 X-ray determinations. Furthermore, f_(abs) at z = 0.1-0.5 and log(L_x/erg s^(-1) ≈ 43.6-44.3 agrees with observational measurements/trends obtained over larger redshift intervals. We report a significant anti-correlation of R with L_X (confirmed by our companion paper on stacked spectra) with considerable scatter around the median R values
- …