21 research outputs found

    RNA Aptamers Generated against Oligomeric Aβ40 Recognize Common Amyloid Aptatopes with Low Specificity but High Sensitivity

    Get PDF
    Aptamers are useful molecular recognition tools in research, diagnostics, and therapy. Despite promising results in other fields, aptamer use has remained scarce in amyloid research, including Alzheimer's disease (AD). AD is a progressive neurodegenerative disease believed to be caused by neurotoxic amyloid β-protein (Aβ) oligomers. Aβ oligomers therefore are an attractive target for development of diagnostic and therapeutic reagents. We used covalently-stabilized oligomers of the 40-residue form of Aβ (Aβ40) for aptamer selection. Despite gradually increasing the stringency of selection conditions, the selected aptamers did not recognize Aβ40 oligomers but reacted with fibrils of Aβ40, Aβ42, and several other amyloidogenic proteins. Aptamer reactivity with amyloid fibrils showed some degree of protein-sequence dependency. Significant fibril binding also was found for the naïve library and could not be eliminated by counter-selection using Aβ40 fibrils, suggesting that aptamer binding to amyloid fibrils was RNA-sequence-independent. Aptamer binding depended on fibrillogenesis and showed a lag phase. Interestingly, aptamers detected fibril formation with ≥15-fold higher sensitivity than thioflavin T (ThT), revealing substantial β-sheet and fibril formation undetected by ThT. The data suggest that under physiologic conditions, aptamers for oligomeric forms of amyloidogenic proteins cannot be selected due to high, non-specific affinity of oligonucleotides for amyloid fibrils. Nevertheless, the high sensitivity, whereby aptamers detect β-sheet formation, suggests that they can serve as superior amyloid recognition tools

    Amyloid Plaques Beyond Aβ: A Survey of the Diverse Modulators of Amyloid Aggregation

    Get PDF
    Aggregation of the amyloid-β (Aβ) peptide is strongly correlated with Alzheimer’s disease (AD). Recent research has improved our understanding of the kinetics of amyloid fibril assembly and revealed new details regarding different stages in plaque formation. Presently, interest is turning toward studying this process in a holistic context, focusing on cellular components which interact with the Aβ peptide at various junctures during aggregation, from monomer to cross-β amyloid fibrils. However, even in isolation, a multitude of factors including protein purity, pH, salt content, and agitation affect Aβ fibril formation and deposition, often producing complicated and conflicting results. The failure of numerous inhibitors in clinical trials for AD suggests that a detailed examination of the complex interactions that occur during plaque formation, including binding of carbohydrates, lipids, nucleic acids, and metal ions, is important for understanding the diversity of manifestations of the disease. Unraveling how a variety of key macromolecular modulators interact with the Aβ peptide and change its aggregation properties may provide opportunities for developing therapies. Since no protein acts in isolation, the interplay of these diverse molecules may differentiate disease onset, progression, and severity, and thus are worth careful consideration

    Selection of RNA Aptamers to the Alzheimer's Disease Amyloid Peptide

    No full text
    Alzheimer's disease is correlated with the deposition of amyloid peptides in the brain of the patients. The amyloid is thus a major target in the search for novel diagnostic and therapeutic approaches. The present work employs in vitro selection to develop new tools for the study of the Alzheimer's disease. The selection strategy enables the design of specific nucleic acids (aptamers) against virtually any target molecule. High-affinity RNA aptamers against the A4(1–40) were isolated from a combinatorial library of ~1015 different molecules. The apparent dissociation constants Kd of these aptamers are 29–48 nM. The binding of the RNA to the amyloid fibrils was confirmed by electron microscopy. The chemical synthesis of these nucleic acids enables tailor-made modifications. By introduction of specific reporter groups these RNAs can become suitable tools for analytical and diagnostic purposes. Thus, this study may introduce a new approach for diagnosis of the Alzheimer's disease

    Chronically CNS-Injured Adult Sensory Neurons Gain Regenerative Competence upon a Lesion of Their Peripheral Axon

    Get PDF
    Several experimental manipulations result in axonal regeneration in the central nervous system (CNS) when applied before or at the time of injury [1-6] but not when initiated after a delay [5-10], which would be clinically more relevant. As centrally injured neurons show signs of atrophy and degeneration [11-13], it raises the question whether chronically injured neurons are able to regenerate. To address this question, we used adult rodent primary sensory neurons that regenerate their central axon when their peripheral axon is cut (called conditioning) beforehand but not afterwards. We found that primary sensory neurons express regeneration-associated genes and efficiently regrow their axon in cell culture two months after a central lesion upon conditioning. Moreover, conditioning enables central axons to regenerate through a fresh lesion independent of a previous central lesion. Using in vivo imaging we demonstrated that conditioned neurons rapidly regrow their axons through a fresh central lesion. Finally, when single sensory axons were cut with a two-photon laser, they robustly regenerate within days after attaining growth competence through conditioning. We conclude that sensory neurons can acquire the intrinsic potential to regenerate their axons months after a CNS lesion, which they implement in the absence of traumatic tissue

    Electrical Activity Suppresses Axon Growth through Ca(v)1.2 Channels in Adult Primary Sensory Neurons

    Get PDF
    Background: Primary sensory neurons of the dorsal root ganglia (DRG) regenerate their spinal cord axon if the peripheral nerve axon has previously been cut. This conditioning lesion confers axon growth competence to the neurons. However, the signal that is sensed by the cell upon peripheral lesion to initiate the regenerative response remains elusive. Results: We show here that loss of electrical activity following peripheral deafferentiation is an important signal to trigger axon regrowth. We first verified that firing in sensory fibers, as recorded from dorsal roots in vivo, declined after peripheral lesioning but was not altered after central lesioning. We found that electrical activity strongly inhibited axon outgrowth in cultured adult sensory neurons. The inhibitory effect depended on the L-type voltage-gated Ca2+ channel current and involved transcriptional changes. After a peripheral lesion, the L-type current was consistently diminished and the L-type pore-forming subunit, Ca(v)1.2, was downregulated. Genetic ablation of Ca(v)1.2 in the nervous system caused an increase in axon outgrowth from dissociated DRG neurons and enhanced peripheral nerve regeneration in vivo. Conclusions: Our data indicate that cessation of electrical activity after peripheral lesion contributes to the regenerative response observed upon conditioning and might be necessary to promote regeneration after central nervous system injury

    Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury

    Get PDF
    Hypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through various cellular mechanisms, including dampening of transforming growth factor-β signaling. It prevented accumulation of chondroitin sulfate proteoglycans and rendered the lesion site permissive for axon regeneration of growth-competent sensory neurons. Microtubule stabilization also promoted growth of central nervous system axons of the Raphe-spinal tract and led to functional improvement. Thus, microtubule stabilization reduces fibrotic scarring and enhances the capacity of axons to grow

    Single-cell axotomy of cultured hippocampal neurons integrated in neuronal circuits

    No full text
    An understanding of the molecular mechanisms of axon regeneration after injury is key for the development of potential therapies. Single-cell axotomy of dissociated neurons enables the study of the intrinsic regenerative capacities of injured axons. This protocol describes how to perform single-cell axotomy on dissociated hippocampal neurons containing synapses. Furthermore, to axotomize hippocampal neurons integrated in neuronal circuits, we describe how to set up coculture with a few fluorescently labeled neurons. This approach allows axotomy of single cells in a complex neuronal network and the observation of morphological and molecular changes during axon regeneration. Thus, single-cell axotomy of mature neurons is a valuable tool for gaining insights into cell intrinsic axon regeneration and the plasticity of neuronal polarity of mature neurons. Dissociation of the hippocampus and plating of hippocampal neurons takes ∼2 h. Neurons are then left to grow for 2 weeks, during which time they integrate into neuronal circuits. Subsequent axotomy takes 10 min per neuron and further imaging takes 10 min per neuron

    In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration

    No full text
    In the peripheral nervous system (PNS), damaged axons regenerate successfully, whereas axons in the CNS fail to regrow. In neurons of the dorsal root ganglia (DRG), which extend branches to both the PNS and CNS, only a PNS lesion but not a CNS lesion induces axonal growth. How this differential growth response is regulated in vivo is only incompletely understood. Here, we combine in vivo time-lapse fluorescence microscopy with genetic manipulations in mice to reveal how the transcription factor STAT3 regulates axonal regeneration. We show that selective deletion of STAT3 in DRG neurons of STAT3-floxed mice impairs regeneration of peripheral DRG branches after a nerve cut. Further, overexpression of STAT3 induced by viral gene transfer increases outgrowth and collateral sprouting of central DRG branches after a dorsal column lesion by more than 400%. Notably, repetitive in vivo imaging of individual fluorescently labeled PNS and CNS axons reveals that STAT3 selectively regulates initiation but not later perpetuation of axonal growth. With STAT3, we thus identify a phase-specific regulator of axonal outgrowth. Activating STAT3 might provide an opportunity to “jumpstart” regeneration, and thus prime axons in the injured spinal cord for application of complementary therapies that improve axonal elongation

    Robust CNS regeneration after complete spinal cord transection using aligned poly-l-lactic acid microfibers

    No full text
    Following spinal cord injury, axons fail to regenerate without exogenous intervention. In this study we report that aligned microfiber-based grafts foster robust regeneration of vascularized CNS tissue. Film, random, and aligned microfiber-based conduits were grafted into a 3 mm thoracic rat spinal cord gap created by complete transection. Over the course of 4 weeks, microtopography presented by aligned or random poly-l-lactic acid microfibers facilitated infiltration of host tissue, and the initial 3 mm gap was closed by endogenous cell populations. This bulk tissue response was composed of regenerating axons accompanied by morphologically aligned astrocytes. Aligned fibers promoted long distance (2055 ± 150 µm), rostrocaudal axonal regeneration, significantly greater than random fiber (1162 ± 87 µm) and film (413 ± 199 µm) controls. Retrograde tracing indicated that regenerating axons originated from propriospinal neurons of the rostral spinal cord, and supraspinal neurons of the reticular formation, red nucleus, raphe and vestibular nuclei. Our findings outline a form of regeneration within the central nervous system that holds important implications for regeneration biology
    corecore