57 research outputs found

    Dewetting of thin polymer films: Influence of interface evolution

    Full text link
    The dewetting dynamics of ultrathin polymer films, e.g. in the model system of polystyrene on a polydimethylsiloxane-covered substrate, exhibits interesting behavior like a fast decay of the dewetting velocity and a maximum in the width of the built-up rim in the course of time. These features have been recently ascribed to the relaxation of residual stresses in the film that stem from the nonequilibrium preparation of the samples. Recent experiments by Coppee et al. on PS with low molecular weight, where such stresses could not be evidenced, showed however similar behavior. By scaling arguments and numerical solution of a thin film viscoelastic model we show that the maximum in the width of the rim can be caused by a temporal evolution of the friction coefficient (or equivalently of the slip length), for which we discuss two possible mechanisms. In addition, the maximum in the width is affected by the sample age. As a consequence, knowing the temporal behavior of friction (or slip length) in principle allows to measure the aging dynamics of a polymer-polymer interface by simple dewetting experiments.Comment: 6 pages, 2 figure

    Inland Waters Increasingly Produce and Emit Nitrous Oxide

    Get PDF
    Nitrous oxide (N 2O) is a long-lived greenhouse gas and currently contributes ∌10% to global greenhouse warming. Studies have suggested that inland waters are a large and growing global N 2O source, but whether, how, where, when, and why inland-water N 2O emissions changed in the Anthropocene remains unclear. Here, we quantify global N 2O formation, transport, and emission along the aquatic continuum and their changes using a spatially explicit, mechanistic, coupled biogeochemistry-hydrology model. The global inland-water N 2O emission increased from 0.4 to 1.3 Tg N yr -1 during 1900-2010 due to (1) growing N 2O inputs mainly from groundwater and (2) increased inland-water N 2O production, largely in reservoirs. Inland waters currently contribute 7 (5-10)% to global total N 2O emissions. The highest inland-water N 2O emissions are typically in and downstream of reservoirs and areas with high population density and intensive agricultural activities in eastern and southern Asia, southeastern North America, and Europe. The expected continuing excessive use of nutrients, dam construction, and development of suboxic conditions in aging reservoirs imply persisting high inland-water N 2O emissions

    An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope

    Get PDF
    The Surface Water and Ocean Topography (SWOT) satellite mission planned for launch in 2020 will map river elevations and inundated area globally for rivers >100 m wide. In advance of this launch, we here evaluated the possibility of estimating discharge in ungauged rivers using synthetic, daily ‘‘remote sensing’’ measurements derived from hydraulic models corrupted with minimal observational errors. Five discharge algorithms were evaluated, as well as the median of the five, for 19 rivers spanning a range of hydraulic and geomorphic conditions. Reliance upon a priori information, and thus applicability to truly ungauged reaches, varied among algorithms: one algorithm employed only global limits on velocity and depth, while the other algorithms relied on globally available prior estimates of discharge. We found at least one algorithm able to estimate instantaneous discharge to within 35% relative root-mean-squared error (RRMSE) on 14/16 nonbraided rivers despite out-of-bank flows, multichannel planforms, and backwater effects. Moreover, we found RRMSE was often dominated by bias; the median standard deviation of relative residuals across the 16 nonbraided rivers was only 12.5%. SWOT discharge algorithm progress is therefore encouraging, yet future efforts should consider incorporating ancillary data or multialgorithm synergy to improve results

    Forms and subannual variability of nitrogen and phosphorus loading to global river networks over the 20th century

    No full text
    Nitrogen (N) and phosphorus (P) play a major role in the biogeochemical functioning of aquatic systems. N and P transfer to surface freshwaters has amplified during the 20th century, which has led to widespread eutrophication problems. The contribution of different sources, natural and anthropogenic, to total N and P loading to river networks has recently been estimated yearly using the Integrated Model to Assess the Global Environment - Global Nutrient Model (IMAGE-GNM). However, eutrophic events generally result from a combination of physicochemical conditions governed by hydrological dynamics and the availability of specific nutrient forms that vary at subyearly timescales. In the present study, we define for each simulated nutrient source: i) its speciation, and ii) its subannual temporal pattern. Thereby, we simulate the monthly loads of different N (ammonium, nitrate + nitrite, and organic N) and P forms (dissolved and particulate inorganic P, and organic P) to global river networks over the whole 20th century at a half-degree spatial resolution. Results indicate that, together with an increase in the delivery of all nutrient forms to global rivers, the proportion of inorganic forms in total N and P inputs has risen from 30 to 43% and from 56 to 65%, respectively. The high loads originating from fertilized agricultural lands and the increasing proportion of sewage inputs have led to a greater proportion of DIN forms (ammonium and nitrate), that are usually more bioavailable. Soil loss from agricultural lands, which delivers large amounts of particle-bound inorganic P to surface freshwaters, has become the dominant P source, which is likely to lead to an increased accumulation of legacy P in slow flowing areas (e.g., lakes and reservoirs). While the TN:TP ratio of the loads has remained quite stable, the DIN:DIP molar ratio, which is likely to affect algal development the most, has increased from 18 to 27 globally. Human activities have also affected the timing of nutrient delivery to surface freshwaters. Increasing wastewater emissions in growing urban areas induces constant local pressure on the quality of aquatic systems by delivering generally highly bioavailable nutrient forms, even in periods of low runoff

    Forms and subannual variability of nitrogen and phosphorus loading to global river networks over the 20th century

    No full text
    Nitrogen (N) and phosphorus (P) play a major role in the biogeochemical functioning of aquatic systems. N and P transfer to surface freshwaters has amplified during the 20th century, which has led to widespread eutrophication problems. The contribution of different sources, natural and anthropogenic, to total N and P loading to river networks has recently been estimated yearly using the Integrated Model to Assess the Global Environment - Global Nutrient Model (IMAGE-GNM). However, eutrophic events generally result from a combination of physicochemical conditions governed by hydrological dynamics and the availability of specific nutrient forms that vary at subyearly timescales. In the present study, we define for each simulated nutrient source: i) its speciation, and ii) its subannual temporal pattern. Thereby, we simulate the monthly loads of different N (ammonium, nitrate + nitrite, and organic N) and P forms (dissolved and particulate inorganic P, and organic P) to global river networks over the whole 20th century at a half-degree spatial resolution. Results indicate that, together with an increase in the delivery of all nutrient forms to global rivers, the proportion of inorganic forms in total N and P inputs has risen from 30 to 43% and from 56 to 65%, respectively. The high loads originating from fertilized agricultural lands and the increasing proportion of sewage inputs have led to a greater proportion of DIN forms (ammonium and nitrate), that are usually more bioavailable. Soil loss from agricultural lands, which delivers large amounts of particle-bound inorganic P to surface freshwaters, has become the dominant P source, which is likely to lead to an increased accumulation of legacy P in slow flowing areas (e.g., lakes and reservoirs). While the TN:TP ratio of the loads has remained quite stable, the DIN:DIP molar ratio, which is likely to affect algal development the most, has increased from 18 to 27 globally. Human activities have also affected the timing of nutrient delivery to surface freshwaters. Increasing wastewater emissions in growing urban areas induces constant local pressure on the quality of aquatic systems by delivering generally highly bioavailable nutrient forms, even in periods of low runoff

    Estimating ecosystem metabolism from continuous multi-sensor measurements in the Seine River

    No full text
    Large rivers are important components of the global C cycle. While they are facing an overall degradation of their water quality, little remains known about the dynamics of their metabolism. In the present study, we used continuous multi-sensors measurements to assess the temporal variability of gross primary production (GPP) and ecosystem respiration (ER) rates of the anthropized Seine River over an annual cycle. Downstream from the Paris urban area, the Seine River is net heterotrophic at the annual scale (−226 gO2 m−2 year−1 or −264 gC m−2 year−1). Yet, it displays a net autotrophy at the daily and seasonal scales during phytoplankton blooms occurring from late winter to early summer. Multivariate analyses were performed to identify the drivers of river metabolism. Daily GPP is best predicted by chlorophyll a (Chla), water temperature (T), light, and rainfalls, and the coupling of daily GPP and Chla allows for the estimation of the productivity rates of the different phytoplankton communities. ER rates are mainly controlled by T and, to a lesser extent, by Chla. The increase of combined sewer overflows related to storm events during the second half of the year stimulates ER and the net heterotrophy of the river. River metabolism is, thus, controlled at different timescales by factors that are affected by human pressures. Continuous monitoring of river metabolism must, therefore, be pursued to deepen our understanding about the responses of ecosystem processes to changing human pressures and climate

    Modeling phosphorus in rivers at the global scale : recent successes, remaining challenges, and near-term opportunities

    No full text
    Understanding and mitigating the effects of phosphorus (P) overenrichment of waters globally, including the evaluation of the global Sustainability Development Goals, requires the use of global models. Such models quantitatively link land use, global population growth and climate to aquatic nutrient loading and biogeochemical cycling. Here we describe, compare, and contrast the existing global models capable of predicting P transport by rivers at a global scale. We highlight important insights gained from the development and application of these models, and identify important near-term opportunities for model improvements as well as additional insight to be gained through new model analysis.</p

    Modeling phosphorus in rivers at the global scale : recent successes, remaining challenges, and near-term opportunities

    No full text
    Understanding and mitigating the effects of phosphorus (P) overenrichment of waters globally, including the evaluation of the global Sustainability Development Goals, requires the use of global models. Such models quantitatively link land use, global population growth and climate to aquatic nutrient loading and biogeochemical cycling. Here we describe, compare, and contrast the existing global models capable of predicting P transport by rivers at a global scale. We highlight important insights gained from the development and application of these models, and identify important near-term opportunities for model improvements as well as additional insight to be gained through new model analysis

    Global database on dissolved carbon in soil solution, including ancillary information on a range of potential drivers

    No full text
    Dissolved carbon leaching in and from soils plays an important role in C transport along the terrestrial-aquatic continuum. However, a global overview and analysis of dissolved carbon in soil solutions, covering a wide range of vegetation types and climates, is lacking. We compiled a global database on annual average dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in soil solutions, including potential governing factors, with 762 entries from 351 different sites covering a range of climate zones, land cover types and soil classes. Using this database we develop regression models to calculate topsoil concentrations, and concentrations vs. depth in the subsoil at the global scale. For DIC, the lack of a roportional globally distributed cover inhibits analysis on a global scale. For DOC, annual average concentrations range from 1.7 to 88.3 (median=25.27) mg C/L for topsoils (n=255) and from 0.42 to 372.1 (median=5.50) mg C/L for subsoils (n=285, excluding lab incubations). Highest topsoil values occur in forests of cooler, humid zones. In topsoils, multiple regression showed that precipitation is the most significant factor. Our global topsoil DOC model (R2=0.36) uses precipitation, soil class, climate zone and land cover type as model factors. Our global subsoil model describes DOC concentrations vs. depth for different USDA soil classes (overall R2=0.45). Highest subsoil DOC concentrations are calculated for Histosols
    • 

    corecore