148 research outputs found

    Glacial Inception in Marine Isotope Stage 19: An Orbital Analog for a Natural Holocene Climate

    Get PDF
    The Marine Isotope Stage 19c (MIS19c) interglaciation is regarded as the best orbital analog to the Holocene. The close of MIS19c (~777,000 years ago) thus serves as a proxy for a contemporary climate system unaffected by humans. Our global climate model simulation driven by orbital parameters and observed greenhouse gas concentrations at the end of MIS19c is 1.3 K colder than the reference pre-industrial climate of the late Holocene (year 1850). Much stronger cooling occurs in the Arctic, where sea ice and year-round snow cover expand considerably. Inferred regions of glaciation develop across northeastern Siberia, northwestern North America, and the Canadian Archipelago. These locations are consistent with evidence from past glacial inceptions and are favored by atmospheric circulation changes that reduce ablation of snow cover and increase accumulation of snowfall. Particularly large buildups of snow depth coincide with presumed glacial nucleation sites, including Baffin Island and the northeast Canadian Archipelago. These findings suggest that present-day climate would be susceptible to glacial inception if greenhouse gas concentrations were as low as they were at the end of MIS 19c

    Late Holocene climate: Natural or anthropogenic?

    Get PDF
    For more than a decade, scientists have argued about the warmth of the current interglaciation. Was the warmth of the preindustrial late Holocene natural in origin, the result of orbital changes that had not yet driven the system into a new glacial state? Or was it in considerable degree the result of humans intervening in the climate system through greenhouse gas emissions from early agriculture? Here we summarize new evidence that moves this debate forward by testing both hypotheses. By comparing late Holocene responses to those that occurred during previous interglaciations (in section 2), we assess whether the late Holocene responses look different (and thus anthropogenic) or similar (and thus natural). This comparison reveals anomalous (anthropogenic) signals. In section 3, we review paleoecological and archaeological syntheses that provide ground truth evidence on early anthropogenic releases of greenhouse gases. The available data document large early anthropogenic emissions consistent with the anthropogenic ice core anomalies, but more information is needed to constrain their size. A final section compares natural and anthropogenic interpretations of the δ13C trend in ice core CO2

    Evaluation of knowledge levels amongst village AIDS committees after undergoing HIV educational sessions: results from a pilot study in rural Tanzania

    Get PDF
    ABSTRACT: BACKGROUND: Village AIDS committees (VAC) were formed by the Tanzanian government in 2003 to provide HIV education to their communities. However, their potential has not been realised due to their limited knowledge and misconceptions surrounding HIV, which could be addressed through training of VAC members. In an attempt to increase HIV knowledge levels and address common misconceptions amongst the VACs, an HIV curriculum was delivered to members in rural north western Tanzania. METHODS: An evaluation of HIV knowledge was conducted prior to and post-delivery of HIV training sessions, within members of three VACs in Kisesa ward. Quantitative surveys were used with several open-ended questions to identify local misconceptions and evaluate HIV knowledge levels. Short educational training sessions covering HIV transmission, prevention and treatment were conducted, with each VAC using quizzes, role-plays and participatory learning and action tools. Post-training surveys occurred up to seven days after the final training session. RESULTS: Before the training, "good" HIV knowledge was higher amongst men than women (p = 0.041), and among those with previous HIV education (p = 0.002). The trade-centre had a faster turn-over of VAC members, and proximity to the trade-centre was associated with a shorter time on the committee.Training improved HIV knowledge levels with more members achieving a "good" score in the post-training survey compared with the baseline survey (p = < 0.001). The training programme was popular, with 100% of participants requesting further HIV training in the future and 51.7% requesting training at three-monthly intervals. CONCLUSIONS: In this setting, a series of HIV training sessions for VACs demonstrated encouraging results, with increased HIV knowledge levels following short educational sessions. Further work is required to assess the success of VAC members in disseminating this HIV education to their communities, as well as up-scaling this pilot study to other regions in Tanzania with different misconceptions

    Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather

    Get PDF
    The article of record as published may be found at https://doi.org/10.1038/s41558-019-0662-yWe thank R. Blackport, C. Deser, L. Sun, J. Screen and D. Smith for discussions and suggested revisions to the manuscript. We also thank J. Screen and L. Sun for model data. A. Amin helped to create Fig. 2. US CLIVAR logistically and financially supported the Arctic-Midlatitude Working Group and Arctic Change and its Influence on Mid-Latitude Climate and Weather workshop that resulted in this article. J.C. is supported by the US National Science Foundation grants AGS-1657748 and PLR-1504361, 1901352. M.W. acknowledges funding by the Deutsche Forschungsgemeinschaft project no. 268020496– TRR 172, within the Transregional Collaborative Research Center “Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)3 ”. T.V. was supported by the Academy of Finland grant 317999. J.O. was supported by the NOAA Arctic Research Program. J.F. was supported by the Woods Hole Research Center. S.W. and H.G. are supported by the US DOE Award Number DE-SC0016605. J.Y. was supported by the Korea Meteorological Administration Research and Development Program under grant KMI2018-01015 and National Research Foundation grant NRF_2017R1A2B4007480. D.H. is supported by the Helmholtz Association of German Research Centers (grant FKZ HRSF-0036, project POLEX). The authors acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and thank the climate modelling groups (listed in Supplementary Table 1) for producing and making available their model output. For CMIP, the US Department of Energy’s PCMDI provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.The Arctic has warmed more than twice as fast as the global average since the late twentieth century, a phenomenon known as Arctic amplification (AA). Recently, there have been considerable advances in understanding the physical contributions to AA, and progress has been made in understanding the mechanisms that link it to midlatitude weather variability. Observational studies overwhelmingly support that AA is contributing to winter continental cooling. Although some model experiments sup port the observational evidence, most modelling results show little connection between AA and severe midlatitude weather or suggest the export of excess heating from the Arctic to lower latitudes. Divergent conclusions between model and observational studies, and even intramodel studies, continue to obfuscate a clear understanding of how AA is influencing midlatitude weather

    Arctic change and possible influence on mid-latitude climate and weather: a US CLIVAR White Paper

    Get PDF
    The Arctic has warmed more than twice as fast as the global average since the mid 20th century, a phenomenon known as Arctic amplification (AA). These profound changes to the Arctic system have coincided with a period of ostensibly more frequent events of extreme weather across the Northern Hemisphere (NH) mid-latitudes, including extreme heat and rainfall events and recent severe winters. Though winter temperatures have generally warmed since 1960 over mid-to-high latitudes, the acceleration in the rate of warming at high-latitudes, relative to the rest of the NH, started approximately in 1990. Trends since 1990 show cooling over the NH continents, especially in Northern Eurasia. The possible link between Arctic change and mid-latitude climate and weather has spurred a rush of new observational and modeling studies. A number of workshops held during 2013-2014 have helped frame the problem and have called for continuing and enhancing efforts for improving our understanding of Arctic-mid-latitude linkages and its attribution to the occurrence of extreme climate and weather events. Although these workshops have outlined some of the major challenges and provided broad recommendations, further efforts are needed to synthesize the diversified research results to identify where community consensus and gaps exist. Building upon findings and recommendations of the previous workshops, the US CLIVAR Working Group on Arctic Change and Possible Influence on Mid-latitude Climate and Weather convened an international workshop at Georgetown University in Washington, DC, on February 1-3, 2017. Experts in the fields of atmosphere, ocean, and cryosphere sciences assembled to assess the rapidly evolving state of understanding, identify consensus on knowledge and gaps in research, and develop specific actions to accelerate progress within the research community. With more than 100 participants, the workshop was the largest and most comprehensive gathering of climate scientists to address the topic to date. In this white paper, we synthesize and discuss outcomes from this workshop and activities involving many of the working group members

    Perennial snow and ice variations (2000–2008) in the Arctic circumpolar land area from satellite observations

    Get PDF
    Perennial snow and ice (PSI) extent is an important parameter of mountain environments with regard to its involvement in the hydrological cycle and the surface energy budget. We investigated interannual variations of PSI in nine mountain regions of interest (ROI) between 2000 and 2008. For that purpose, a novel MODIS data set processed at the Canada Centre for Remote Sensing at 250 m spatial resolution was utilized. The extent of PSI exhibited significant interannual variations, with coefficients of variation ranging from 5% to 81% depending on the ROI. A strong negative relationship was found between PSI and positive degree‐days (threshold 0°C) during the summer months in most ROIs, with linear correlation coefficients (r) being as low as r = −0.90. In the European Alps and Scandinavia, PSI extent was significantly correlated with annual net glacier mass balances, with r = 0.91 and r = 0.85, respectively, suggesting that MODIS‐derived PSI extent may be used as an indicator of net glacier mass balances. Validation of PSI extent in two land surface classifications for the years 2000 and 2005, GLC‐2000 and Globcover, revealed significant discrepancies of up to 129% for both classifications. With regard to the importance of such classifications for land surface parameterizations in climate and land surface process models, this is a potential source of error to be investigated in future studies. The results presented here provide an interesting insight into variations of PSI in several ROIs and are instrumental for our understanding of sensitive mountain regions in the context of global climate change assessment

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved
    corecore