329 research outputs found
A Hybrid GA-PSO Method for Evolving Architecture and Short Connections of Deep Convolutional Neural Networks
Image classification is a difficult machine learning task, where
Convolutional Neural Networks (CNNs) have been applied for over 20 years in
order to solve the problem. In recent years, instead of the traditional way of
only connecting the current layer with its next layer, shortcut connections
have been proposed to connect the current layer with its forward layers apart
from its next layer, which has been proved to be able to facilitate the
training process of deep CNNs. However, there are various ways to build the
shortcut connections, it is hard to manually design the best shortcut
connections when solving a particular problem, especially given the design of
the network architecture is already very challenging.
In this paper, a hybrid evolutionary computation (EC) method is proposed to
\textit{automatically} evolve both the architecture of deep CNNs and the
shortcut connections. Three major contributions of this work are: Firstly, a
new encoding strategy is proposed to encode a CNN, where the architecture and
the shortcut connections are encoded separately; Secondly, a hybrid two-level
EC method, which combines particle swarm optimisation and genetic algorithms,
is developed to search for the optimal CNNs; Lastly, an adjustable learning
rate is introduced for the fitness evaluations, which provides a better
learning rate for the training process given a fixed number of epochs. The
proposed algorithm is evaluated on three widely used benchmark datasets of
image classification and compared with 12 peer Non-EC based competitors and one
EC based competitor. The experimental results demonstrate that the proposed
method outperforms all of the peer competitors in terms of classification
accuracy
Comparative Morphology of the Penis and Clitoris in Four Species of Moles (Talpidae).
The penile and clitoral anatomy of four species of Talpid moles (broad-footed, star-nosed, hairy-tailed, and Japanese shrew moles) were investigated to define penile and clitoral anatomy and to examine the relationship of the clitoral anatomy with the presence or absence of ovotestes. The ovotestis contains ovarian tissue and glandular tissue resembling fetal testicular tissue and can produce androgens. The ovotestis is present in star-nosed and hairy-tailed moles, but not in broad-footed and Japanese shrew moles. Using histology, three-dimensional reconstruction, and morphometric analysis, sexual dimorphism was examined with regard to a nine feature masculine trait score that included perineal appendage length (prepuce), anogenital distance, and presence/absence of bone. The presence/absence of ovotestes was discordant in all four mole species for sex differentiation features. For many sex differentiation features, discordance with ovotestes was observed in at least one mole species. The degree of concordance with ovotestes was highest for hairy-tailed moles and lowest for broad-footed moles. In relationship to phylogenetic clade, sex differentiation features also did not correlate with the similarity/divergence of the features and presence/absence of ovotestes. Hairy-tailed and Japanese shrew moles reside in separated clades, but they exhibit a high degree of congruence. Broad-footed and hairy-tailed moles reside within the same clade but had one of the lowest correlations in features and presence/absence of ovotestes. Thus, phylogenetic affinity and the presence/absence of ovotestes are poor predictors for most sex differentiation features within mole external genitalia
Analysis of Male Pheromones That Accelerate Female Reproductive Organ Development
Male odors can influence a female's reproductive physiology. In the mouse, the odor of male urine results in an early onset of female puberty. Several volatile and protein pheromones have previously been reported to each account for this bioactivity. Here we bioassay inbred BALB/cJ females to study pheromone-accelerated uterine growth, a developmental hallmark of puberty. We evaluate the response of wild-type and mutant mice lacking a specialized sensory transduction channel, TrpC2, and find TrpC2 function to be necessary for pheromone-mediated uterine growth. We analyze the relative effectiveness of pheromones previously identified to accelerate puberty through direct bioassay and find none to significantly accelerate uterine growth in BALB/cJ females. Complementary to this analysis, we have devised a strategy of partial purification of the uterine growth bioactivity from male urine and applied it to purify bioactivity from three different laboratory strains. The biochemical characteristics of the active fraction of all three strains are inconsistent with that of previously known pheromones. When directly analyzed, we are unable to detect previously known pheromones in urine fractions that generate uterine growth. Our analysis indicates that pheromones emitted by males to advance female puberty remain to be identified
Decrease in Anogenital Distance among Male Infants with Prenatal Phthalate Exposure
Prenatal phthalate exposure impairs testicular function and shortens anogenital distance (AGD) in male rodents. We present data from the first study to examine AGD and other genital measurements in relation to prenatal phthalate exposure in humans. A standardized measure of AGD was obtained in 134 boys 2–36 months of age. AGD was significantly correlated with penile volume (R = 0.27, p = 0.001) and the proportion of boys with incomplete testicular descent (R = 0.20, p = 0.02). We defined the anogenital index (AGI) as AGD divided by weight at examination [AGI = AGD/weight (mm/kg)] and calculated the age-adjusted AGI by regression analysis. We examined nine phthalate monoester metabolites, measured in prenatal urine samples, as predictors of age-adjusted AGI in regression and categorical analyses that included all participants with prenatal urine samples (n = 85). Urinary concentrations of four phthalate metabolites [monoethyl phthalate (MEP), mono-n-butyl phthalate (MBP), monobenzyl phthalate (MBzP), and monoisobutyl phthalate (MiBP)] were inversely related to AGI. After adjusting for age at examination, p-values for regression coefficients ranged from 0.007 to 0.097. Comparing boys with prenatal MBP concentration in the highest quartile with those in the lowest quartile, the odds ratio for a shorter than expected AGI was 10.2 (95% confidence interval, 2.5 to 42.2). The corresponding odds ratios for MEP, MBzP, and MiBP were 4.7, 3.8, and 9.1, respectively (all p-values < 0.05). We defined a summary phthalate score to quantify joint exposure to these four phthalate metabolites. The age-adjusted AGI decreased significantly with increasing phthalate score (p-value for slope = 0.009). The associations between male genital development and phthalate exposure seen here are consistent with the phthalate-related syndrome of incomplete virilization that has been reported in prenatally exposed rodents. The median concentrations of phthalate metabolites that are associated with short AGI and incomplete testicular descent are below those found in one-quarter of the female population of the United States, based on a nationwide sample. These data support the hypothesis that prenatal phthalate exposure at environmental levels can adversely affect male reproductive development in humans
Vancomycin versus Placebo for Treating Persistent Fever in Patients with Neutropenic Cancer Receiving Piperacillin-Tazobactam Monotherapy
This prospective, double-blind trial assessed whether the addition of a glycopeptide would be able to reduce the time to defervescence in neutropenic patients with cancer who had persistent fever 48-60 h after the initiation of empirical piperacillin-tazobactam monotherapy. Of 763 eligible patients, 165 with persistent fever were randomized to receive piperacillin-tazobactam therapy plus either vancomycin therapy or placebo. Defervescence was observed in 82 (95%) of 86 patients in the vancomycin group and in 73 (92%) of 79 patients in the placebo group (P = .52). The distributions of the time to defervescence were not statistically significant between the 2 groups (estimated hazard ratio, 1.03; 95% confidence interval, 0.75-1.43; P = .75). The number of additional episodes of gram-positive bacteremia and the percentage of patients for whom amphotericin B was empirically added to their therapy regimen were also similar in both groups. This study failed to demonstrate that the empirical addition of vancomycin therapy to the treatment regimen is of benefit to persistently febrile neutropenic patients with cance
Field Blue Stragglers and Related Mass Transfer Issues
This chapter contains my impressions and perspectives about the current state
of knowledge about field blue stragglers (FBS) stars, drawn from an extensive
literature that I searched. I conclude my review of issues that attend FBS and
mass transfer, by a brief enumeration of a few mildly disquieting observational
facts.Comment: Chapter 4, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G.
Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement
Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis
The Multiplicity of Main Sequence Turnoffs in Globular Clusters
We present color-magnitude diagrams of globular clusters for models with
self-enrichment and pre-enrichment. The models with self-enrichment turn out to
have two or more main sequence turnoff points in the color-magnitude diagram if
the fraction of mass lost by the globular cluster under supernova explosions
does not exceed 95-97%. The models with pre-enrichment can have only one main
sequence turnoff point. We argue that the cluster wCen evolved according to a
self-enrichment scenario.Comment: 13 pages, 7 figure
One-pot RAFT and fast polymersomes assembly: a ‘beeline’ from monomers to drug-loaded nanovectors
Rapid and simple routes to functional polymersomes are increasingly needed to expand their clinical or industrial applications. Here we describe a novel strategy where polymersomes are prepared through an in-line process in just a few hours, starting from simple acrylate or acrylamide monomers. Using Perrier's protocol, well-defined amphiphilic diblock copolymers formed from PEG acrylate (mPEGA480), 2-(acryloyloxy)ethyl-3-chloro-4-hydroxybenzoate (ACH) or 2-(3-chloro-4-hydroxybenzamido)ethyl acrylate (CHB), have been synthesised by RAFT polymerisation in one-pot, pushing the monomer conversion for each block close to completion (≥94%). The reaction mixture, consisting of green biocompatible solvents (ethanol/water) have then been directly utilised to generate well-defined polymersomes, by simple cannulation into water or in a more automated process, by using a bespoke microfluidic device. Terbinafine and cyanocobalamine were used to demonstrate the suitability of the process to incorporate model hydrophobic and hydrophilic drugs, respectively. Vesicles size and morphology were characterised by DLS, TEM, and AFM. In this work we show that materials and experimental conditions can be chosen to allow facile and rapid generation drug-loaded polymersomes, through a suitable in-line process, directly from acrylate or acrylamide monomer building blocks
Cellular composition characterizing postnatal development and maturation of the mouse brain and spinal cord
The process of development, maturation, and regression in the central nervous system (CNS) are genetically programmed and influenced by environment. Hitherto, most research efforts have focused on either the early development of the CNS or the late changes associated with aging, whereas an important period corresponding to adolescence has been overlooked. In this study, we searched for age-dependent changes in the number of cells that compose the CNS (divided into isocortex, hippocampus, olfactory bulb, cerebellum, ‘rest of the brain’, and spinal cord) and the pituitary gland in 4–40-week-old C57BL6 mice, using the isotropic fractionator method in combination with neuronal nuclear protein as a marker for neuronal cells. We found that all CNS structures, except for the isocortex, increased in mass in the period of 4–15 weeks. Over the same period, the absolute number of neurons significantly increased in the olfactory bulb and cerebellum while non-neuronal cell numbers increased in the ‘rest of the brain’ and isocortex. Along with the gain in body length and weight, the pituitary gland also increased in mass and cell number, the latter correlating well with changes of the brain and spinal cord mass. The majority of the age-dependent alterations (e.g., somatic parameters, relative brain mass, number of pituitary cells, and cellular composition of the cerebellum, isocortex, rest of the brain, and spinal cord) occur rapidly between the 4th and 11th postnatal weeks. This period includes murine adolescence, underscoring the significance of this stage in the postnatal development of the mouse CNS
- …