3,259 research outputs found

    The mass of the black hole in LMC X-3

    Get PDF
    New high resolution, optical spectroscopy of the high mass X-ray binary LMC X-3, shows the spectral type of the donor star changes with phase due to irradition by the X-ray source. We find the spectral type is likely to be B5V, and only appears as B3V when viewing the heated side of the donor. Combining our measurements with those previously published, and taking into account the effects of X-ray irradiation, results in a value for the donor star radial velocity semi-amplitude of Ko=256.7±4.9K_{o} = 256.7 \pm 4.9~km~s1^{-1}. We find the mass of the black hole lies in the range 9.5MMx13.6M9.5M_{\odot} \leq M_{\rm x} \leq 13.6M_{\odot}

    The male Genitalia of some Neotropical Drosophila: notes and illustrations

    Get PDF

    Quantum effects on Higgs-strahlung events at Linear Colliders within the general 2HDM

    Get PDF
    The associated production of neutral Higgs bosons with the Z gauge boson is investigated in the context of the future linear colliders, such as the ILC and CLIC, within the general two-Higgs-doublet model (2HDM). We compute the corresponding production cross-sections at one-loop, in full consistency with the available theoretical and phenomenological constraints. We find that the wave-function renormalization corrections to the external Higgs fields are the dominant source of the quantum effects, which turn out to be large and negative, and located predominantly in the region around \tan\beta=1 and moderate values of the parameter \lambda_5 (being \lambda_5 < 0). This behavior can be ultimately traced back to the enhancement potential of the triple Higgs boson self-couplings, a trademark feature of the 2HDM with no counterpart in the Higgs sector of the Minimal Supersymmetric Standard Model. The predicted Higgs-strahlung rates comfortably reach a few tens of femtobarn, which means barely 10^3 - 10^4 events per 500 inverse femtobarn of integrated luminosity. Due to their great complementarity, we argue that the combined analysis of the Higgs-strahlung events and the previously computed one-loop Higgs-pair production processes could be instrumental to probe the structure of the Higgs sector at future linac facilities.Comment: LaTeX, 16 pages, 9 Figures, 2 Tables. Extended discussion, references added, matches published version in Phys. Rev.

    Steam reforming of bio-compounds with auto-reduced nickel catalyst

    Get PDF
    As an extension of chemical looping combustion, chemical looping steam reforming (CLSR) has been developed for H2 production. During CLSR, a steam reforming (SR) process occurs following the reduction of catalysts by the reforming feedstock itself (termed ‘auto-reduction’), as opposed to a separate, dedicated reducing agent like H2. This paper studied SR performances of four common bio-compounds (ethanol, acetone, furfural and glucose) with a nickel catalyst that had undergone auto-reduction. A packed bed reactor was used to carry out the experiment of auto-reduction and subsequent SR. Effects of temperature and steam to carbon ratio (S/C) on carbon conversions of the bio-compounds to gases and yields of gaseous products were investigated. The carbon deposition on spent catalysts was characterized by CHN elemental analysis and SEM-EDX. The SR performance with the auto-reduced catalyst was close to that with H2-reduced catalyst. In general, an increase in temperature or S/C would lead to an increase in H2 yields. The dependence of SR performance on temperature or S/C was specific to the type of bio-compounds. Accordingly, main bottlenecks for SR of each bio-compound were summarized. A large amount of CH4 existed in the reforming product of ethanol. Severe carbon deposition was observed for SR of acetone at temperatures below 650 °C. A high thermal stability of furfural molecules or its derivatives restricted the SR of furfural. For SR of glucose, the main problem was the severe agglomeration of catalyst particles due to glucose coking

    A Newly introduced Drosophila Species in Brazil (Diptera, Drosophilidae)

    Get PDF

    Temperature-programmed reduction of nickel steam reforming catalyst with glucose

    Get PDF
    Temperature-programmed reduction (TPR) of a NiO/α-Al2O3 steam reforming catalyst with glucose under a N2 flow was investigated using TGA-FTIR technique. A series of catalyst samples obtained at different temperatures during the TPR were characterised by XRD, CHN elemental analysis, SEM-EDX and TPO. Results showed that the whole TPR covering from room temperature to 900 °C consisted of two reactive processes. They were glucose pyrolysis producing carbonaceous materials (char), and NiO reduction by the char resulting in CO2 as a main product. When the initial mass ratio of glucose to the catalyst was 1:10, the catalyst could be completely reduced without carbon remaining. Moreover, two mass loss peaks were observed at around 440 °C and 670 °C, respectively, during the reduction. Based on the experiments of char characterisation, H2 TPR and excess glucose TPR, a two-stage reduction mechanism was proposed. The first reduction stage was attributed to a solid reaction between NiO and char. The second stage was assigned to NiO being reduced by the CO produced by char gasification with CO2. Their apparent activation energies were 197 ± 19 kJ/mol and 316 ± 17 kJ/mol, respectively, estimated using the Kissinger method

    Modelling Circumbinary Gas Flows in Close T Tauri Binaries

    Full text link
    Young close binaries open central gaps in the surrounding circumbinary accretion disc, but the stellar components may still gain mass from gas crossing through the gap. It is not well understood how this process operates and how the stellar components are affected by such inflows. Our main goal is to investigate how gas accretion takes place and evolves in close T Tauri binary systems. In particular, we model the accretion flows around two close T Tauri binaries, V4046 Sgr and DQ Tau, both showing periodic changes in emission lines, although their orbital characteristics are very different. In order to derive the density and velocity maps of the circumbinary material, we employ two-dimensional hydrodynamic simulations with a locally isothermal equation of state. The flow patterns become quasi-stable after a few orbits in the frame co-rotating with the system. Gas flows across the circumbinary gap through the co-rotating Lagrangian points, and local circumstellar discs develop around both components. Spiral density patterns develop in the circumbinary disc that transport angular momentum efficiently. Mass is preferentially channelled towards the primary and its circumstellar disc is more massive than the disc around the secondary. We also compare the derived density distribution to observed line profile variability. The line profile variability tracing the gas flows in the central cavity shows clear similarities with the corresponding observed line profile variability in V4046 Sgr, but only when the local circumstellar disc emission was excluded. Closer to the stars normal magnetospheric accretion may dominate while further out the dynamic accretion process outlined here dominates. Periodic changes in the accretion rates onto the stars can explain the outbursts of line emission observed in eccentric systems such as DQ Tau.Comment: Accepted for publication in MNRA

    Crystallization in a model glass: influence of the boundary conditions

    Full text link
    Using molecular dynamics calculations and the Voronoi tessellation, we study the evolution of the local structure of a soft-sphere glass versus temperature starting from the liquid phase at different quenching rates. This study is done for different sizes and for two different boundary conditions namely the usual cubic periodic boundary conditions and the isotropic hyperspherical boundary conditions for which the particles evolve on the surface of a hypersphere in four dimensions. Our results show that for small system sizes, crystallization can indeed be induced by the cubic boundary conditions. On the other hand we show that finite size effects are more pronounced on the hypersphere and that crystallization is artificially inhibited even for large system sizes.Comment: 11 pages, 2 figure

    Metabolic adjustments in two Amazonian cichlids exposed to hypoxia and anoxia.

    Get PDF
    The effects of graded hypoxia on the physiological and biochemical responses were examined in two closely related species of cichlids of the Amazon: Astronotus crassipinnis and Symphysodon aequifasciatus. Ten fish of each species were exposed to graded hypoxia for 8 h in seven oxygen concentrations (5.92, 3.15, 1.54, 0.79, 0.60, 0.34, and 0.06 mg O2 L- 1), with the aim to evaluate hypoxia tolerance and metabolic adjustments, where plasma glucose and lactate levels, hepatic and muscle glycogen contents, and maximum enzyme activities (PK, LDH, MDH and CS) in skeletal and cardiac muscles were measured. Another experimental set was done to quantify oxygen consumption (MO2) and opercular movements in two oxygen concentrations. Hypoxia tolerance differed between the two species. Astronotus crassipinnis was able to tolerate anoxia for 178 min while S. aequifasciatus was able to withstand 222 min exposure in deep hypoxia (0.75 mg O2 L- 1). Suppressed MO2 was observed during exposure to 0.34 (A. crassipinnis) and 0.79 mg O2 L- 1 (S. aequifasciatus), while opercular movements increased in both species exposed to hypoxia. Higher levels of muscle and liver glycogen and larger hypoxia-induced increases in plasma glucose and lactate were observed in A. crassipinnis, which showed a higher degree of hypoxia tolerance. Changes in enzyme levels were tissue-specific and differed between species suggesting differential abilities in down-regulating oxidative pathways and increasing anaerobic metabolism. Based on the present data, we conclude that these animals are good anaerobes and highly adapted to their environment, which is allowed by their abilities to regulate metabolic pathways and adjust their enzyme levels
    corecore