2,752 research outputs found

    Employing a Modified Diffuser Momentum Model to Simulate Ventilation of the Orion CEV

    Get PDF
    The Ansys CFX CFD modeling tool was used to support the design efforts of the ventilation system for the Orion CEV. CFD modeling was used to establish the flow field within the cabin for several supply configurations. A mesh and turbulence model sensitivity study was performed before the design studies. Results were post-processed for comparison with performance requirements. Most configurations employed straight vaned diffusers to direct and throw the flow. To manage the size of the models, the diffuser vanes were not resolved. Instead, a momentum model was employed to account for the effect of the diffusers. The momentum model was tested against a separate, vane-resolved side study. Results are presented for a single diffuser configuration for a low supply flow case

    Deep learning-based segmentation of malignant pleural mesothelioma tumor on computed tomography scans: application to scans demonstrating pleural effusion

    Get PDF
    Tumor volume is a topic of interest for the prognostic assessment, treatment response evaluation, and staging of malignant pleural mesothelioma. Many mesothelioma patients present with, or develop, pleural fluid, which may complicate the segmentation of this disease. Deep convolutional neural networks (CNNs) of the two-dimensional U-Net architecture were trained for segmentation of tumor in the left and right hemithoraces, with the networks initialized through layers pretrained on ImageNet. Networks were trained on a dataset of 5230 axial sections from 154 CT scans of 126 mesothelioma patients. A test set of 94 CT sections from 34 patients, who all presented with both tumor and pleural effusion, in addition to a more general test set of 130 CT sections from 43 patients, were used to evaluate segmentation performance of the deep CNNs. The Dice similarity coefficient (DSC), average Hausdorff distance, and bias in predicted tumor area were calculated through comparisons with radiologist-provided tumor segmentations on the test sets. The present method achieved a median DSC of 0.690 on the tumor and effusion test set and achieved significantly higher performance on both test sets when compared with a previous deep learning-based segmentation method for mesothelioma

    Comparison of High-degree Solar Acoustic Frequencies and Asymmetry between Velocity and Intensity Data

    Get PDF
    Using the local helioseismic technique of ring diagram we analyze the frequencies of high--degree f- and p-modes derived from both velocity and continuum intensity data observed by MDI. Fitting the spectra with asymmetric peak profiles, we find that the asymmetry associated with velocity line profiles is negative for all frequency ranges agreeing with previous observations while the asymmetry of the intensity profiles shows a complex and frequency dependent behavior. We also observe systematic frequency differences between intensity and velocity spectra at the high end of the frequency range, mostly above 4 mHz. We infer that this difference arises from the fitting of the intensity rather than the velocity spectra. We also show that the frequency differences between intensity and velocity do not vary significantly from the disk center to the limb when the spectra are fitted with the asymmetric profile and conclude that only a part of the background is correlated with the intensity oscillations.Comment: Accepted for publication in Astrophysical Journa

    Thermodynamics of Heat Shock Response

    Get PDF
    Production of heat shock proteins are induced when a living cell is exposed to a rise in temperature. The heat shock response of protein DnaK synthesis in E.coli for temperature shifts from temperature T to T plus 7 degrees, respectively to T minus 7 degrees is measured as function of the initial temperature T. We observe a reversed heat shock at low T. The magnitude of the shock increases when one increase the distance to the temperature T0≈23oT_0 \approx 23^o, thereby mimicking the non monotous stability of proteins at low temperature. Further we found that the variation of the heat shock with T quantitatively follows the thermodynamic stability of proteins with temperature. This suggest that stability related to hot as well as cold unfolding of proteins is directly implemented in the biological control of protein folding. We demonstrate that such an implementation is possible in a minimalistic chemical network.Comment: To be published in Physical Review Letter

    Characterization Measurements of Sapphire and Diamond based KIDs for Polarimetric Plasma Diagnostics

    Get PDF

    On the Formation Height of the SDO/HMI Fe 6173 Doppler Signal

    Full text link
    The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) is designed to study oscillations and the mag- netic field in the solar photosphere. It observes the full solar disk in the Fe I absorption line at 6173\AA . We use the output of a high-resolution 3D, time- dependent, radiation-hydrodynamic simulation based on the CO5BOLD code to calculate profiles F({\lambda},x,y,t) for the Fe I 6173{\AA} line. The emerging profiles F({\lambda},x,y,t) are multiplied by a representative set of HMI filter transmission profiles R_i({\lambda},1 \leq i \leq 6) and filtergrams I_i(x,y,t;1 \leq i \leq 6) are constructed for six wavelengths. Doppler velocities V_HMI(x,y,t) are determined from these filtergrams using a simplified version of the HMI pipeline. The Doppler velocities are correlated with the original velocities in the simulated atmosphere. The cross- correlation peaks near 100 km, suggesting that the HMI Doppler velocity signal is formed rather low in the solar atmosphere. The same analysis is performed for the SOHO/MDI Ni I line at 6768\AA . The MDI Doppler signal is formed slightly higher at around 125 km. Taking into account the limited spatial resolution of the instruments, the apparent formation height of both the HMI and MDI Doppler signal increases by 40 to 50 km. We also study how uncertainties in the HMI filter-transmission profiles affect the calculated velocities.Comment: 15 pages, 11 Figure

    Proper orthogonal decomposition of solar photospheric motions

    Full text link
    The spatio-temporal dynamics of the solar photosphere is studied by performing a Proper Orthogonal Decomposition (POD) of line of sight velocity fields computed from high resolution data coming from the MDI/SOHO instrument. Using this technique, we are able to identify and characterize the different dynamical regimes acting in the system. Low frequency oscillations, with frequencies in the range 20-130 microHz, dominate the most energetic POD modes (excluding solar rotation), and are characterized by spatial patterns with typical scales of about 3 Mm. Patterns with larger typical scales of 10 Mm, are associated to p-modes oscillations at frequencies of about 3000 microHz.Comment: 8 figures in jpg in press on PR

    Women, anger, and aggression an interpretative phenomenological analysis

    Get PDF
    This study reports a qualitative phenomenological investigation of anger and anger-related aggression in the context of the lives of individual women. Semistructured interviews with five women are analyzed using interpretative phenomenological analysis. This inductive approach aims to capture the richness and complexity of the lived experience of emotional life. In particular, it draws attention to the context-dependent and relational dimension of angry feelings and aggressive behavior. Three analytic themes are presented here: the subjective experience of anger, which includes the perceptual confusion and bodily change felt by the women when angry, crying, and the presence of multiple emotions; the forms and contexts of aggression, paying particular attention to the range of aggressive strategies used; and anger as moral judgment, in particular perceptions of injustice and unfairness. The authors conclude by examining the analytic observations in light of phenomenological thinking
    • …
    corecore